Positive Ricci curvature through Cheeger deformations

被引:0
|
作者
Leonardo F. Cavenaghi
Renato J. M. e Silva
Llohann D. Sperança
机构
[1] Instituto de Matemática,
[2] Estatística e Computação Cinetífica – Unicamp,undefined
[3] Instituto de Matemática,undefined
[4] Estatística e Computação Científica – UNICAMP,undefined
[5] Instituto de Ciência e Tecnologia – Unifesp,undefined
来源
Collectanea Mathematica | 2024年 / 75卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to a deep analysis of the process known as Cheeger deformation, applied to manifolds with isometric group actions. Here, we provide new curvature estimates near singular orbits and present several applications. As the main result, we answer a question raised by a seminal result of Searle–Wilhelm about lifting positive Ricci curvature from the quotient of an isometric action. To answer this question, we develop techniques that can be used to provide a substantially streamlined version of a classical result of Lawson and Yau, generalize a curvature condition of Chavéz, Derdzinski, and Rigas, as well as, give an alternative proof of a result of Grove and Ziller.
引用
收藏
页码:481 / 510
页数:29
相关论文
共 50 条
  • [1] Positive Ricci curvature through Cheeger deformations
    Cavenaghi, Leonardo F.
    J M e Silva, Renato
    Speranca, Llohann D.
    COLLECTANEA MATHEMATICA, 2024, 75 (02) : 481 - 510
  • [2] BOUNDED RICCI CURVATURE AND POSITIVE SCALAR CURVATURE UNDER RICCI FLOW
    Kroncke, Klaus
    Marxen, Tobias
    Vertman, Boris
    PACIFIC JOURNAL OF MATHEMATICS, 2023, 324 (02) : 295 - 331
  • [3] Graphs with Positive Ricci Curvature
    Huang, Qiqi
    He, Weihua
    Zhang, Chaoqin
    GRAPHS AND COMBINATORICS, 2025, 41 (01)
  • [4] DEFORMATIONS OF RICCI CURVATURE .2. PRELIMINARY REPORT
    EHRLICH, PE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (02): : A281 - A281
  • [5] Exotic spheres with positive Ricci curvature
    Wraith, D
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 45 (03) : 638 - 649
  • [6] Large manifolds with positive Ricci curvature
    Colding, TH
    INVENTIONES MATHEMATICAE, 1996, 124 (1-3) : 193 - 214
  • [7] On eigenvalue pinching in positive Ricci curvature
    Peter Petersen
    Inventiones mathematicae, 1999, 138 : 1 - 21
  • [8] On eigenvalue pinching in positive Ricci curvature
    Petersen, P
    INVENTIONES MATHEMATICAE, 1999, 138 (01) : 1 - 21
  • [9] EXAMPLES OF MANIFOLDS OF POSITIVE RICCI CURVATURE
    SHA, JP
    YANG, DG
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1989, 29 (01) : 95 - 103
  • [10] MANIFOLDS WITH POSITIVE ORTHOGONAL RICCI CURVATURE
    Ni, Lei
    Wang, Qingsong
    Zheng, Fangyang
    AMERICAN JOURNAL OF MATHEMATICS, 2021, 143 (03) : 833 - 857