Classification of Finite p-Groups by the Size of Their Schur Multipliers

被引:0
|
作者
Peyman Niroomand
Farangis Johari
机构
[1] Damghan University,School of Mathematics and Computer Science
[2] Instituto de Matemática e Estatística da Universidade de São Paulo,undefined
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2022年 / 45卷
关键词
Schur multiplier; Capable groups; Finite ; -groups; Primary 20D15; Secondary 20E34; 20F18;
D O I
暂无
中图分类号
学科分类号
摘要
Let d(G) be the minimum number of elements required to generate a group G. For a group G of order pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^n$$\end{document} with a derived subgroup of order pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p^k $$\end{document} and d(G)=d,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(G) = d,$$\end{document} we know the order of the Schur multiplier of G is bounded by p12(d-1)(n-k+2)+1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p^{\frac{1}{2}(d-1)(n-k+2)+1}. $$\end{document} In this paper, we find the structure of all p-groups that obtains the mentioned bound. Moreover, we show that all of them are capable.
引用
收藏
页码:2137 / 2150
页数:13
相关论文
共 50 条