Starting from a general effective Lagrangian for lepton flavor violation (LFV) in quark-lepton transitions, we derive constraints on the effective coefficients from the high-mass tails of the dilepton processes pp→ℓkℓl\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$pp \rightarrow \ell _k \ell _l$$\end{document} (with k≠l\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k\ne l$$\end{document}). The current (projected) limits derived in this paper from LHC data with 36fb-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$36~\mathrm {fb}^{-1}$$\end{document} (3ab-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3~\mathrm {ab}^{-1}$$\end{document}) can be applied to generic new physics scenarios, including the ones with scalar, vector and tensor effective operators. For purely left-handed operators, we explicitly compare these LHC constraints with the ones derived from flavor-physics observables, illustrating the complementarity of these different probes. While flavor physics is typically more constraining for quark-flavor violating operators, we find that LHC provides the most stringent limits on several flavor-conserving ones. Furthermore, we show that dilepton tails offer the best probes for charm-quark transitions at current luminosities and that they provide competitive limits for tauonic b→d\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$b\rightarrow d$$\end{document} transitions at the high-luminosity LHC phase. As a by-product, we also provide general numerical expressions for several low-energy LFV processes, such as the semi-leptonic decays K→πℓk±ℓl∓\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K\rightarrow \pi \ell ^{\pm }_k \ell ^{{\mp }}_l$$\end{document}, B→πℓk±ℓl∓\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B\rightarrow \pi \ell ^{\pm }_k \ell ^{{\mp }}_l$$\end{document} and B→K(∗)ℓk±ℓl∓\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B\rightarrow K^{(*)} \ell ^{\pm }_k \ell ^{{\mp }}_l$$\end{document}.