Trace Inequalities for Fractional Integrals in Mixed Norm Grand Lebesgue Spaces

被引:0
|
作者
Vakhtang Kokilashvili
Alexander Meskhi
机构
[1] A. Razmadze Mathematical Institute I. Javakhishvili Tbilisi State University,Dept. of Mathematical Analysis
[2] Kutaisi International University Youth Avenue,undefined
[3] Turn 5/7,undefined
关键词
multiple fractional integral operators; mixed norm grand Lebesgue spaces; potentials on quasi-metric measure spaces; one—sided potentials; boundedness; trace inequality;
D O I
暂无
中图分类号
学科分类号
摘要
D. Adams type trace inequalities for multiple fractional integral operators in grand Lebesgue spaces with mixed norms are established. Operators under consideration contain multiple fractional integrals defined on the product of quasi-metric measure spaces, and one-sided multiple potentials. In the case when we deal with operators defined on bounded sets, the established conditions are simultaneously necessary and sufficient for appropriate trace inequalities. The derived results are new even for multiple Riesz potential operators defined on the product of Euclidean spaces.
引用
收藏
页码:1452 / 1471
页数:19
相关论文
共 50 条
  • [1] TRACE INEQUALITIES FOR FRACTIONAL INTEGRALS IN MIXED NORM GRAND LEBESGUE SPACES
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (05) : 1452 - 1471
  • [2] Trace inequalities for fractional integrals in grand Lebesgue spaces
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    STUDIA MATHEMATICA, 2012, 210 (02) : 159 - 176
  • [3] Mixed Norm Inequalities for Lebesgue Spaces
    Pankaj Jain
    Santosh Kumari
    Monika Singh
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020, 90 : 783 - 787
  • [4] Mixed Norm Inequalities for Lebesgue Spaces
    Jain, Pankaj
    Kumari, Santosh
    Singh, Monika
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2020, 90 (05) : 783 - 787
  • [5] RIESZ FRACTIONAL INTEGRALS IN GRAND LEBESGUE SPACES ON Rn
    Samko, Stefan
    Umarkhadzhiev, Salaudin
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (03) : 608 - 624
  • [6] MULTILINEAR FRACTIONAL INTEGRALS IN WEIGHTED GRAND LEBESGUE SPACES
    Kokilashvili, V.
    Mastylo, M.
    Meskhi, A.
    PROCEEDINGS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2015, 169 : 143 - 153
  • [7] Riesz Fractional Integrals in Grand Lebesgue Spaces on ℝn
    Stefan Samko
    Salaudin Umarkhadzhiev
    Fractional Calculus and Applied Analysis, 2016, 19 : 608 - 624
  • [8] Fractional integrals with measure in grand Lebesgue and Morrey spaces
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (09) : 695 - 709
  • [10] On Uryson Operators with Partial Integrals in Lebesgue Spaces with Mixed Norm
    Chen, C. -J.
    Kalitvin, A. S.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1998, 17 (01): : 3 - 8