Special Pairs in the Generating Subset of the Weierstrass Semigroup at a Pair

被引:0
|
作者
Eunju Kang
Seon Jeong Kim
机构
[1] Honam University,Department of Mathematics
[2] Gyeongsang National University,Department of Mathematics
来源
Geometriae Dedicata | 2003年 / 99卷
关键词
generalized Weierstrass point; Weierstrass semigroup of a pair; Weierstrass semigroup of a point;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the structure of the Weierstrass semigroup at a pair of points on an algebraic curve. It is known that the Weierstrass semigroup at a pair (P, Q) contains the unique generating subset Γ(P, Q). We find some characterizations of the elements of Γ(P, Q) and prove that, for any point P on a curve, Γ(P, Q) consists of only maximal elements for all except for finitely many points Q ≠ P on the given curve. Also we obtain more results concerning special and nonspecial pairs.
引用
收藏
页码:167 / 177
页数:10
相关论文
共 50 条
  • [21] Generating pairs of projective special linear groups that fail to lift
    Boschheidgen, Jan
    Klopsch, Benjamin
    Thillaisundaram, Anitha
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (07) : 1251 - 1258
  • [22] The Riemann constant for a non-symmetric Weierstrass semigroup
    Komeda, Jiryo
    Matsutani, Shigeki
    Previato, Emma
    ARCHIV DER MATHEMATIK, 2016, 107 (05) : 499 - 509
  • [23] The Riemann constant for a non-symmetric Weierstrass semigroup
    Jiryo Komeda
    Shigeki Matsutani
    Emma Previato
    Archiv der Mathematik, 2016, 107 : 499 - 509
  • [24] Weierstrass semigroup and automorphism group of the curves χn,r
    Borges, H.
    Sepulveda, A.
    Tizziotti, G.
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 36 : 121 - 132
  • [25] The uniqueness of Weierstrass points with semigroup ⟨a; b⟩ and related semigroups
    Coppens, Marc
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2019, 89 (01): : 1 - 16
  • [26] WEIERSTRASS PAIRS FOR SOME MODULAR GROUPS
    KASDAN, JM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 151 - &
  • [27] Ideals and free Pairs in the semigroup β ℤ
    I. V. Protasov
    Ukrainian Mathematical Journal, 1997, 49 (4)
  • [28] WYTHOFF PAIRS AS SEMIGROUP INVARIANTS
    PORTA, HA
    STOLARSKY, KB
    ADVANCES IN MATHEMATICS, 1991, 85 (01) : 69 - 82
  • [29] Weierstrass Semigroup and Pure Gaps at Several Points on the GK Curve
    Tizziotti, G.
    Castellanos, A. S.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (02): : 419 - 429
  • [30] Weierstrass Semigroup and Pure Gaps at Several Points on the GK Curve
    G. Tizziotti
    A. S. Castellanos
    Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49 : 419 - 429