Cost-efficient scheduling on machines from the cloud

被引:0
|
作者
Alexander Mäcker
Manuel Malatyali
Friedhelm Meyer auf der Heide
Sören Riechers
机构
[1] Paderborn University,
来源
关键词
Scheduling; Setup times; Cloud; Competitiveness;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a scheduling problem where machines need to be rented from the cloud in order to process jobs. There are two types of machines available which can be rented for machine-type dependent prices and for arbitrary durations. However, a machine-type dependent setup time is required before a machine is available for processing. Jobs arrive online over time, have deadlines and machine-type dependent sizes. The objective is to rent machines and schedule jobs so as to meet all deadlines while minimizing the rental cost. As we observe the slack of jobs to have a fundamental influence on the competitiveness, we parameterize instances by their (minimum) slack. An instance is called to have a slack of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} if, for all jobs, the difference between the job’s release time and the latest point in time at which it needs to be started is at least β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. While for β<s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta < s$$\end{document} no finite competitiveness is possible, our main result is an online algorithm for β=(1+ε)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta = (1+\varepsilon )s$$\end{document} with [inline-graphic not available: see fulltext], where s denotes the largest setup time. Its competitiveness only depends on ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} and the cost ratio of the machine types and is proven to be optimal up to a factor of [inline-graphic not available: see fulltext].
引用
下载
收藏
页码:1168 / 1194
页数:26
相关论文
共 50 条
  • [1] Cost-efficient scheduling on machines from the cloud
    Maecker, Alexander
    Malatyali, Manuel
    Heide, Friedhelm Meyer auf der
    Riechers, Soren
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (04) : 1168 - 1194
  • [2] A cost-efficient scheduling algorithm for streaming processing applications on cloud
    Li, Hongjian
    Fang, Hai
    Dai, Hongxi
    Zhou, Tao
    Shi, Wenhu
    Wang, Jingjing
    Xu, Chen
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (02): : 781 - 803
  • [3] Cost-Efficient Scheduling of Streaming Applications in Apache Flink on Cloud
    Li, Hongjian
    Xia, Jianglin
    Luo, Wei
    Fang, Hai
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (04) : 1086 - 1101
  • [4] Cost-Efficient VNF Placement and Scheduling in Public Cloud Networks
    Gao, Tao
    Li, Xin
    Wu, Yu
    Zou, Weixia
    Huang, Shanguo
    Tornatore, Massimo
    Mukherjee, Biswanath
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (08) : 4946 - 4959
  • [5] A cost-efficient scheduling algorithm for streaming processing applications on cloud
    Hongjian Li
    Hai Fang
    Hongxi Dai
    Tao Zhou
    Wenhu Shi
    Jingjing Wang
    Chen Xu
    Cluster Computing, 2022, 25 : 781 - 803
  • [6] Cost-efficient task scheduling for executing large programs in the cloud
    Su, Sen
    Li, Jian
    Huang, Qingjia
    Huang, Xiao
    Shuang, Kai
    Wang, Jie
    PARALLEL COMPUTING, 2013, 39 (4-5) : 177 - 188
  • [7] Cost-Efficient Workload Scheduling in Cloud Assisted Mobile Edge Computing
    Ma, Xiao
    Zhang, Shan
    Wenzhuo, L.
    Zhang, Puheng
    Lin, Chuang
    Shen, Xuemin
    2017 IEEE/ACM 25TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2017,
  • [8] Cost-efficient coordinated scheduling for leasing cloud resources on hybrid workloads
    Li, Jian
    Su, Sen
    Cheng, Xiang
    Song, Meina
    Ma, Liyu
    Wang, Jie
    PARALLEL COMPUTING, 2015, 44 : 1 - 17
  • [9] Cost-Efficient Distributed MapReduce Job Scheduling across Cloud Federation
    Gouasmi, Thouraya
    Louati, Wajdi
    Kacem, Ahmed Hadj
    2017 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC), 2017, : 289 - 296
  • [10] Skedulix: Hybrid Cloud Scheduling for Cost-Efficient Execution of Serverless Applications
    Das, Anirban
    Leaf, Andrew
    Varela, Carlos A.
    Patterson, Stacy
    2020 IEEE 13TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD 2020), 2020, : 609 - 618