Rank 1 character varieties of finitely presented groups

被引:0
|
作者
Caleb Ashley
Jean-Philippe Burelle
Sean Lawton
机构
[1] University of Michigan,Department of Mathematics
[2] Institut des Hautes Études Scientifiques,Department of Mathematical Sciences
[3] George Mason University,undefined
来源
Geometriae Dedicata | 2018年 / 192卷
关键词
Character variety; Effective algorithm; Rank 1 Lie group; Finitely presented group; 14Q20; 14D20; 14L30; 20C15;
D O I
暂无
中图分类号
学科分类号
摘要
Let X(Γ,G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {X}(\Gamma ,G)$$\end{document} be the G-character variety of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} where G is a rank 1 complex affine algebraic group and Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a finitely presentable discrete group. We describe an algorithm, which we implement in Mathematica, SageMath, and in Python, that takes a finite presentation for Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} and produces a finite presentation of the coordinate ring of X(Γ,G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {X}(\Gamma ,G)$$\end{document}. We also provide a new description of the defining relations and local parameters of the coordinate ring when Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is free. Although the theorems used to create the algorithm are not new, we hope that as a well-referenced exposition with a companion computer program it will be useful for computation and experimentation with these moduli spaces.
引用
收藏
页码:1 / 19
页数:18
相关论文
共 50 条