Unconditional global well-posedness for the 3D Gross-Pitaevskii equation for data without finite energy

被引:0
|
作者
Hartmut Pecher
机构
[1] Bergische Universität Wuppertal,Fachbereich Mathematik und Naturwissenschaften
关键词
35Q55; 35B60; 37L50; Gross-Pitaevskii equation; Global well-posedness; Fourier restriction norm method;
D O I
暂无
中图分类号
学科分类号
摘要
The Cauchy problem for the Gross-Pitaevskii equation in three space dimensions is shown to have an unconditionally unique global solution for data of the form 1 + Hs for 5/6 < s < 1, which do not have necessarily finite energy. The proof uses the I-method which is complicated by the fact that no L2-conservation law holds. This shows that earlier results of Bethuel-Saut for data of the form 1 + H1 and Gérard for finite energy data remain true for this class of rough data.
引用
收藏
页码:1851 / 1877
页数:26
相关论文
共 50 条