A statistical approach to more than two-parameter families of triple encounters in two-dimensional space

被引:0
|
作者
Ranjeet Kumar
Navin Chandra
Surekha Tomar
机构
[1] R.B.S. College,Department of Physics
[2] B.R. Ambedkar University,Department of Mathematics
[3] Deshbandhu College,undefined
[4] University of Delhi,undefined
来源
关键词
Astrophysics; Three-body problem; Triple close approaches; Statistical theory;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the role of triple encounters with low initial velocities and equal masses in the framework of statistical escape theory in two-dimensional space. This system is described by allowing for both energy and angular momentum conservation in the phase space. The complete statistical solutions (i.e. the semi-major axis ‘a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a$\end{document}’, the distributions of eccentricity ‘e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$e$\end{document}’, and energy Eb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{b}$\end{document} of the final binary, escape energy Es\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{s}$\end{document} of escaper and its escape velocity vs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v_{s}$\end{document}) of the system are calculated. These are in good agreement with the numerical results of Chandra and Bhatnagar (1999) in the range of perturbing velocities vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v_{i}$\end{document} (10−1≤vi≤10−10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$10^{-1} \le v_{i} \le 10^{-10}$\end{document}) in two-dimensional space. The double limit process has been applied to the system. It is observed that when vi→0+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v_{i} \to 0^{ +}$\end{document}, a vs2→2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v_{s}^{2} \to 2 / 3$\end{document} for all directions in two-dimensional space.
引用
收藏
相关论文
共 50 条