A theoretical and empirical evaluation of an algorithm for self-healing computation

被引:0
|
作者
George Saad
Jared Saia
机构
[1] University of New Mexico,Department of Computer Science
来源
Distributed Computing | 2017年 / 30卷
关键词
Self-healing algorithms; Threshold cryptography; Leader election;
D O I
暂无
中图分类号
学科分类号
摘要
In the problem of reliable multiparty computation (RMC), there are n parties, each with an individual input, and the parties want to jointly compute a function f over n inputs; note that it is not required to keep the inputs private. The problem is complicated by the fact that an omniscient adversary controls a hidden fraction of the parties. We describe a self-healing algorithm for this problem. In particular, for a fixed function f, with n parties and m gates, we describe how to perform RMC repeatedly as the inputs to f change. Our algorithm maintains the following properties, even when an adversary controls up to t≤(14-ϵ)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \le (\frac{1}{4} - \epsilon ) n$$\end{document} parties, for any constant ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document}. First, our algorithm performs each reliable computation with the following amortized resource costs: O(m+nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m + n \log n)$$\end{document} messages, O(m+nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m + n \log n)$$\end{document} computational operations, and O(ℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\ell )$$\end{document} latency, where ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} is the depth of the circuit that computes f. Second, the expected total number of corruptions is O(t(log∗m)2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(t (\log ^*{m})^2)$$\end{document}, after which the adversarially controlled parties are effectively quarantined so that they cause no more corruptions. Empirical results show that our algorithm can reduce message cost by a factor of 432 when compared with algorithms that are not self-healing.
引用
收藏
页码:391 / 412
页数:21
相关论文
共 50 条
  • [1] A theoretical and empirical evaluation of an algorithm for self-healing computation
    Saad, George
    Saia, Jared
    [J]. DISTRIBUTED COMPUTING, 2017, 30 (06) : 391 - 412
  • [2] Self-healing Computation
    Saad, George
    Saia, Jared
    [J]. STABILIZATION, SAFETY, AND SECURITY OF DISTRIBUTED SYSTEMS, SSS 2014, 2014, 8756 : 195 - 210
  • [3] Improved distributed self-healing algorithm
    Tian, H.L.
    Han, Y.
    Qiu, P.L.
    [J]. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science Edition, 2001, 35 (04):
  • [4] Theoretical consideration and modeling of self-healing polymers
    Zhang, Ming Qiu
    Rong, Min Zhi
    [J]. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2012, 50 (04) : 229 - 241
  • [5] Network reliability enhancement by a self-healing algorithm
    Greca, A
    Nakagawa, K
    [J]. 10TH IEEE WORKSHOP ON LOCAL AND METROPOLITAN AREA NETWORKS, SELECTED PAPERS: EVOLVING ACCESS AND NETWORKING TECHNIQUES, 2001, : 63 - 70
  • [6] SELF-HEALING RAM MANAGEMENT ALGORITHM.
    Crouse, R.S.
    Dixon, J.D.
    Marazas, G.A.
    McNeill, A.B.
    [J]. 1600, (27):
  • [7] Self-healing algorithm based on feedback mechanism
    Zhao, Ji-Hong
    Qu, Hua
    Chen, Wen-Dong
    [J]. Tongxin Xuebao/Journal on Communications, 2012, 33 (01): : 1 - 9
  • [8] Design of self-healing algorithm for ATM networks
    Gao, WB
    Chang, SC
    Chang, CT
    [J]. TWELFTH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN-12), PROCEEDINGS, 1998, : 2 - 7
  • [9] Self-healing polymers: evaluation of self-healing process via non-destructive techniques
    Bekas, D. G.
    Baltzis, D.
    Tsirka, K.
    Exarchos, D.
    Matikas, T.
    Meristoudi, A.
    Pispas, S.
    Paipetis, A. S.
    [J]. PLASTICS RUBBER AND COMPOSITES, 2016, 45 (04) : 147 - 156
  • [10] Self-healing turing-universal computation in morphogenetic systems
    Petr Sosík
    Max Garzon
    Jan Drastík
    [J]. Natural Computing, 2021, 20 : 739 - 750