Machine Learning for Predicting Intubations in Heart Failure Patients: the Challenge of the Right Approach

被引:0
|
作者
Sai Nikhila Ghanta
Nitesh Gautam
Jawahar L. Mehta
Subhi J. Al’Aref
机构
[1] University of Arkansas for Medical Sciences,Department of Internal Medicine
[2] University of Arkansas for Medical Sciences,Department of Medicine, Division of Cardiology
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:211 / 214
页数:3
相关论文
共 50 条
  • [1] Machine Learning for Predicting Intubations in Heart Failure Patients: the Challenge of the Right Approach
    Ghanta, Sai Nikhila
    Gautam, Nitesh
    Mehta, Jawahar L.
    Al'Aref, Subhi J.
    [J]. CARDIOVASCULAR DRUGS AND THERAPY, 2024, 38 (02) : 211 - 214
  • [2] Predicting the Risk of Severity and Readmission in Patients with Heart Failure in Indonesia:A Machine Learning Approach
    Indriany, Finna E.
    Siregar, Kemal N.
    Purwowiyoto, Budhi Setianto
    Siswanto, Bambang Budi
    Sutedja, Indrajani
    Wijaya, Hendy R.
    [J]. HEALTHCARE INFORMATICS RESEARCH, 2024, 30 (03) : 253 - 265
  • [3] Predicting incident heart failure in patients with type ii diabetes: A machine a learning approach
    Kaur, N.
    Pellicori, P.
    Deligianni, F.
    Jones, Y.
    Friday, J. M.
    Cleland, J. G. F.
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2023, 25 : 427 - 427
  • [4] Predicting In-Hospital Mortality Among Patients Admitted With Heart Failure: A Machine Learning Approach
    He, Rosemary
    Jawadi, Zina
    Srivastava, Pratyaksh
    Khalil, Suzan
    Eskin, Eleazar
    Chiang, Jeffrey
    Nsair, Ali
    [J]. CIRCULATION, 2022, 146
  • [5] Application of machine learning in predicting frailty syndrome in patients with heart failure
    Szczepanowski, Remigiusz
    Uchmanowicz, Izabella
    Pasieczna-Dixit, Aleksandra H.
    Sobecki, Janusz
    Katarzyniak, Radoslaw
    Kolaczek, Grzegorz
    Lorkiewicz, Wojciech
    Kedras, Maja
    Dixit, Anant
    Biegus, Jan
    Wleklik, Marta
    Gobbens, Robbert J. J.
    Hill, Loreena
    Jaarsma, Tiny
    Hussain, Amir
    Barbagallo, Mario
    Veronese, Nicola
    Morabito, Francesco C.
    Kahsin, Aleksander
    [J]. ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE, 2024, 33 (03): : 309 - 315
  • [6] Predicting the risk of mortality and rehospitalization in heart failure patients: A retrospective cohort study by machine learning approach
    Tabrizi, Reza
    Ketabi, Marzieh
    Andishgar, Aref
    Vali, Mohebat
    Fereidouni, Zhila
    Sani, Maryam Mojarrad
    Abdollahi, Ashkan
    Alkamel, Abdulhakim
    [J]. CLINICAL CARDIOLOGY, 2024, 47 (05)
  • [7] Predicting in-hospital mortality among patients admitted with a diagnosis of heart failure: a machine learning approach
    Jawadi, Zina
    He, Rosemary
    Srivastava, Pratyaksh K.
    Fonarow, Gregg C.
    Khalil, Suzan O.
    Krishnan, Srikanth
    Eskin, Eleazar
    Chiang, Jeffrey N.
    Nsair, Ali
    [J]. ESC HEART FAILURE, 2024,
  • [8] Predicting the risk of mortality and rehospitalization in heart failure patients: A retrospective cohort study by machine learning approach
    Ketabi, Marzieh
    Andishgar, Aref
    Fereidouni, Zhila
    Sani, Maryam Mojarrad
    Abdollahi, Ashkan
    Vali, Mohebat
    Alkamel, Abdulhakim
    Tabrizi, Reza
    [J]. CLINICAL CARDIOLOGY, 2024, 47 (02)
  • [9] Machine learning predicting mortality in sarcoidosis patients admitted for acute heart failure
    Dai, Qiying
    Sherif, Akil A.
    Jin, Chengyue
    Chen, Yongbin
    Cai, Peng
    Li, Pengyang
    [J]. CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2022, 3 (06): : 297 - 304
  • [10] Predicting Heart Failure Disease Using Machine Learning
    Basha, Yasser
    Nassif, Ali Bou
    Al-Shabi, Mohammad A.
    [J]. SMART BIOMEDICAL AND PHYSIOLOGICAL SENSOR TECHNOLOGY XIX, 2022, 12123