The crossover from 2D to 3D percolation: Theory and numerical simulations

被引:0
|
作者
P. Sotta
D. Long
机构
[1] Université de Paris XI,Laboratoire de Physique des Solides
来源
关键词
Mechanical Property; Thin Film; Electric Conductivity; Transport Property; Mass Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
We describe here the crossover between 2D and 3D percolation, which we do on cubic and square lattices. As in all problems of critical phenomena, the quantities of interest can be expressed as power laws of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert p-p_{\rm c}(h)\vert$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\rm c}(h)$\end{document} and h are the percolation threshold and the thickness of the film, respectively. When these quantities are considered on the scale of the thickness h of the films, the corresponding numerical prefactors are of order one. However, for many problems, the scale of interest is the elementary one. The corresponding expressions contain then prefactors in power of h which we calculate. For instance, we show that the mass distribution n(m) of the clusters is given by a master function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h^{-D + 1/\sigma_{2}\nu_{3}}\vert p-p_{\rm c}(h)\vert^{1/\sigma_{2}} m$\end{document}, where h is the thickness of the film and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D,\nu_3,\sigma_2$\end{document} are tabulated 2D and 3D critical exponents. We consider also the size R2(m) of the clusters as a function of their mass m, for which we provide both scaling laws and numerical data. Therefore, any property corresponding to a given moment of mass and size can be obtained from our results. These results might be useful for describing transport properties, such as electric conductivity, or the mechanical properties of thin films made of disordered materials.
引用
收藏
页码:375 / 388
页数:13
相关论文
共 50 条
  • [1] The crossover from 2D to 3D percolation: Theory and numerical simulations
    Sotta, P
    Long, D
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2003, 11 (04): : 375 - 387
  • [2] Crossover from 2d to 3d in anisotropic Kondo lattices
    Reyes, D.
    Continentino, M. A.
    [J]. PHYSICA B-CONDENSED MATTER, 2008, 403 (5-9) : 829 - 830
  • [3] A comparison of 2D and 3D numerical simulations of tunnelling in soft soils
    Ngoc Anh Do
    Dias, Daniel
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2017, 76 (03)
  • [4] A comparison of 2D and 3D numerical simulations of tunnelling in soft soils
    Ngoc Anh Do
    Daniel Dias
    [J]. Environmental Earth Sciences, 2017, 76
  • [5] 2D and 3D numerical simulations of reinforced embankments on soft ground
    Bergado, Dennes T.
    Teerawattanasuk, Chairat
    [J]. GEOTEXTILES AND GEOMEMBRANES, 2008, 26 (01) : 39 - 55
  • [6] Numerical study of the Brazilian tensile test: 2D and 3D simulations
    Qiao, Lan
    Liu, Jian
    Li, Qing-Wen
    Zhao, Guo-Yan
    [J]. Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (01): : 131 - 142
  • [7] CONTINUUM PERCOLATION OF 2D AND 3D SIMPLE FLUIDS
    Heyes, D. M.
    Melrose, J. R.
    [J]. MOLECULAR SIMULATION, 1990, 5 (05) : 329 - 343
  • [8] Crossover from 2D to 3D in a Weakly Interacting Fermi Gas
    Dyke, P.
    Kuhnle, E. D.
    Whitlock, S.
    Hu, H.
    Mark, M.
    Hoinka, S.
    Lingham, M.
    Hannaford, P.
    Vale, C. J.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (10)
  • [9] Numerical Evaluation of 2D Versus 3D Simulations for Seismic Slope Stability
    Della Pasqua, Fernando
    Benites, Rafael
    Massey, Chris
    MacSaveney, Mauri
    [J]. ADVANCING CULTURE OF LIVING WITH LANDSLIDES, VOL 2: ADVANCES IN LANDSLIDE SCIENCE, 2017, : 557 - 564
  • [10] An FPGA Implementation of 3D Numerical Simulations on a 2D SIMD Array Processor
    Ishigaki, Yutaro
    Tomioka, Yoichi
    Shibata, Tsugumichi
    Kitazawa, Hitoshi
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 938 - 941