Matrix Representations of Asymmetric Truncated Toeplitz Operators

被引:0
|
作者
Joanna Jurasik
Bartosz Łanucha
机构
[1] Maria Curie-Skłodowska University,Department of Mathematics
关键词
Model space; Truncated Toeplitz operator; Asymmetric truncated Toeplitz operator; Matrix representation; 47B32; 47B35; 30H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we describe the matrix representations of asymmetric truncated Toeplitz operators acting between two finite-dimensional model spaces K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_1$$\end{document} and K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_2$$\end{document}. The novelty of our approach is that here we consider matrix representations computed with respect to bases of different type in K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_1$$\end{document} and K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_2$$\end{document} (for example, kernel basis in K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_1$$\end{document} and conjugate kernel basis in K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_2$$\end{document}). We thus obtain new matrix characterizations which are simpler than the ones already known for asymmetric truncated Toeplitz operators.
引用
收藏
页码:1443 / 1458
页数:15
相关论文
共 50 条
  • [1] Matrix Representations of Asymmetric Truncated Toeplitz Operators
    Jurasik, Joanna
    Lanucha, Bartosz
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (03) : 1443 - 1458
  • [2] Matrix representations of truncated Toeplitz operators
    Lanucha, Bartosz
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 413 (01) : 430 - 437
  • [3] ASYMMETRIC TRUNCATED TOEPLITZ OPERATORS AND TOEPLITZ OPERATORS WITH MATRIX SYMBOL
    Cristina Camara, M.
    Partington, Jonathan R.
    [J]. JOURNAL OF OPERATOR THEORY, 2017, 77 (02) : 455 - 479
  • [4] Symmetric matrix representations of truncated Toeplitz operators on finite dimensional spaces
    O'Loughlin, Ryan
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 666 : 11 - 28
  • [5] Products of asymmetric truncated Toeplitz operators
    Yagoub, Ameur
    [J]. ADVANCES IN OPERATOR THEORY, 2020, 5 (01) : 233 - 247
  • [6] Asymmetric Truncated Toeplitz Operators and Conjugations
    Cristina Camara, M.
    Klis-Garlicka, Kamila
    Ptak, Marek
    [J]. FILOMAT, 2019, 33 (12) : 3697 - 3710
  • [7] Products of asymmetric truncated Toeplitz operators
    Ameur Yagoub
    [J]. Advances in Operator Theory, 2020, 5 : 233 - 247
  • [8] CHARACTERIZATIONS OF ASYMMETRIC TRUNCATED TOEPLITZ OPERATORS
    Camara, Crisina
    Jurasik, Joanna
    Klis-Garlicka, Kamila
    Ptak, Marek
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (04): : 899 - 922
  • [9] Asymmetric Truncated Toeplitz Operators of Rank One
    Lanucha, Bartosz
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2018, 18 (02) : 259 - 267
  • [10] Characterizations of Asymmetric Truncated Toeplitz and Hankel Operators
    Gu, Caixing
    Lanucha, Bartosz
    Michalska, Malgorzata
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) : 673 - 684