Non-relativistic limit of the Mielke-Baekler gravity theory

被引:0
|
作者
Concha, Patrick [1 ,2 ]
Merino, Nelson [3 ,4 ]
Rodriguez, Evelyn [1 ,2 ]
机构
[1] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Alonso De Ribera 2850, Concepcion, Chile
[2] Grp Invest Fis Teor GIFT, Concepcion, Chile
[3] Univ Arturo Prat, Inst Ciencias Exactas & Nat, Playa Brava 3265, Iquique 1111346, Chile
[4] Univ Arturo Prat, Fac Ciencias, Ave Arturo Prat Chacon 2120, Iquique 1110939, Chile
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 04期
关键词
BLACK-HOLE ENTROPY; 3D GRAVITY; SYMMETRIES; SPACETIMES; TORSION;
D O I
10.1140/epjc/s10052-024-12787-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper, we present a generalized non-relativistic Chern-Simons gravity model in three spacetime dimensions. We first study the non-relativistic limit of the Mielke-Baekler gravity through a contraction process. The resulting non-relativistic theory contains a source for the spatial component of the torsion and the curvature measured in terms of two parameters, denoted by p and q. We then extend our results by defining a Newtonian version of the Mielke-Baekler gravity theory, based on a Newtonian like algebra which is obtained from the non-relativistic limit of an enhanced and enlarged relativistic algebra. Remarkably, in both cases, different known non-relativistic and Newtonian gravity theories can be derived by fixing the p , q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( p,q\right) $$\end{document} parameters. In particular, torsionless models are recovered for q = 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=0$$\end{document} .
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Spin-3 fields in Mielke-Baekler gravity
    Peleteiro, J. R. B.
    Valcarcel, C. E.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (18)
  • [2] The Shape of Multidimensional Gravity: Non-relativistic Limit
    Eingorn, Maxim
    Zhuk, Alexander
    [J]. ASTROPHYSICS AND COSMOLOGY AFTER GAMOW, 2009, 1206 : 122 - +
  • [3] String theory and non-relativistic gravity
    Bergshoeff, Eric A.
    Simsek, Ceyda
    [J]. 15TH MARCEL GROSSMANN MEETING, PT A, 2022, : 731 - 743
  • [4] A non-relativistic limit of NS-NS gravity
    E. A. Bergshoeff
    J. Lahnsteiner
    L. Romano
    J. Rosseel
    C. Şimşek
    [J]. Journal of High Energy Physics, 2021
  • [5] A non-relativistic limit of NS-NS gravity
    Bergshoeff, E. A.
    Lahnsteiner, J.
    Romano, L.
    Rosseel, J.
    Simsek, C.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (06)
  • [6] Non-relativistic limit of multidimensional gravity: exact solutions and applications
    Eingorn, Maxim
    Zhuk, Alexander
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (05)
  • [7] Non-relativistic limit of gravity theories in the first order formalism
    Amanda Guerrieri
    Rodrigo F. Sobreiro
    [J]. Journal of High Energy Physics, 2021
  • [8] Newton-Cartan (super)gravity as a non-relativistic limit
    Bergshoeff, Eric
    Rosseel, Jan
    Zojer, Thomas
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (20)
  • [9] Non-relativistic limit of gravity theories in the first order formalism
    Guerrieri, Amanda
    Sobreiro, Rodrigo F.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (03)
  • [10] Nonlinear non-relativistic gravity
    Tomaschitz, R
    [J]. CHAOS SOLITONS & FRACTALS, 1998, 9 (07) : 1199 - 1209