M-theory moduli spaces and torsion-free structures

被引:0
|
作者
Mariana Graña
C. S. Shahbazi
机构
[1] Institut de Physique Théorique,
[2] CEA Saclay,undefined
关键词
Flux compactifications; Differential and Algebraic Geometry; M-Theory;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the description of N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} M-theory compactifications to four-dimensions given by Exceptional Generalized Geometry, we propose a way to geometrize the M-theory fluxes by appropriately relating the compactification space to a higher-dimensional manifold equipped with a torsion-free structure. As a non-trivial example of this proposal, we construct a bijection from the set of Spin(7)-structures on an eight-dimensional S1-bundle to the set of G2-structures on the base space, fully characterizing the G2-torsion clases when the total space is equipped with a torsion-free Spin(7)-structure. Finally, we elaborate on how the higher-dimensional manifold and its moduli space of torsion-free structures can be used to obtain information about the moduli space of M-theory compactifications.
引用
收藏
相关论文
共 50 条
  • [1] M-theory moduli spaces and torsion-free structures
    Grana, Mariana
    Shahbazi, C. S.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05):
  • [2] The moduli space of torsion-free G2 structures
    Wang, SH
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2005, 53 (02) : 166 - 179
  • [3] Vertex operators and the geometry of moduli spaces of framed torsion-free sheaves
    Licata, Anthony
    Savage, Alistair
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2010, 16 (02): : 201 - 240
  • [4] Vertex operators and the geometry of moduli spaces of framed torsion-free sheaves
    Anthony Licata
    Alistair Savage
    [J]. Selecta Mathematica, 2010, 16 : 201 - 240
  • [5] OPERATIONS ON K-THEORY OF TORSION-FREE SPACES
    ADAMS, JF
    HOFFMAN, P
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (MAY) : 483 - 491
  • [6] M-theory moduli from exceptional complex structures
    Smith, George Robert
    Waldram, Daniel
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (08)
  • [7] M-theory moduli from exceptional complex structures
    George Robert Smith
    Daniel Waldram
    [J]. Journal of High Energy Physics, 2023
  • [8] Torsion-free sheaves and moduli of generalized spin curves
    Jarvis, TJ
    [J]. COMPOSITIO MATHEMATICA, 1998, 110 (03) : 291 - 333
  • [9] Moduli stabilization in heterotic M-theory
    Correia, Filipe Paccetti
    Schmidt, Michael G.
    [J]. NUCLEAR PHYSICS B, 2008, 797 (1-2) : 243 - 267
  • [10] Moduli as inflatons in heterotic M-theory
    Barreiro, T
    de Carlos, B
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2000, (03):