A new GAP group library for irreducible maximal solvable subgroups of prime degree classical groups

被引:0
|
作者
Detinko A.S. [1 ]
机构
[1] Polotsk State University, Novopolotsk
关键词
Computer System; Classical Group; Efficient Algorithm; Finite Field; Linear Group;
D O I
10.1023/A:1013532103425
中图分类号
学科分类号
摘要
These notes are concerned with the problem of creating new group libraries for the group-theory computer system GAP (groups, algorithms, and programming). Our main objective is to develop efficient algorithms that produce a list of maximal solvable subgroups of special linear groups of prime degree over a finite field and to implement it as part of the GAP. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:942 / 950
页数:8
相关论文
共 50 条
  • [1] Maximal Subgroups in the Classical Groups Normalizing Solvable Subgroups
    Yang, Yu Cheng
    Li, Shang Zhi
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (05) : 740 - 752
  • [2] Maximal Subgroups in the Classical Groups Normalizing Solvable Subgroups
    Yu Cheng Yang
    Shang Zhi Li
    [J]. Acta Mathematica Sinica, English Series, 2021, 37 : 740 - 752
  • [3] Maximal Subgroups in the Classical Groups Normalizing Solvable Subgroups
    Yu Cheng YANG
    Shang Zhi LI
    [J]. Acta Mathematica Sinica,English Series, 2021, 37 (05) : 740 - 752
  • [4] Maximal Subgroups in the Classical Groups Normalizing Solvable Subgroups
    Hou, Xin
    Li, Shangzhi
    Yang, Yucheng
    [J]. ALGEBRA COLLOQUIUM, 2021, 28 (02) : 181 - 194
  • [5] MINIMUM IRREDUCIBLE SOLVABLE LINEAR GROUPS OF PRIME DEGREE
    SUPRUNEN.DA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1972, 205 (03): : 540 - &
  • [7] MAXIMAL SUBGROUPS OF SOLVABLE GROUPS
    BUCHTHAL, DC
    [J]. ARCHIV DER MATHEMATIK, 1975, 26 (03) : 234 - 235
  • [8] Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices
    W. Guo
    A. S. Kondrat’ev
    N. V. Maslova
    L. Miao
    [J]. Proceedings of the Steklov Institute of Mathematics, 2020, 309 : S47 - S51
  • [9] Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices
    Guo, W.
    Kondrat'ev, A. S.
    Maslova, N. V.
    Miao, L.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 309 (SUPPL 1) : S47 - S51
  • [10] Finite groups whose maximal subgroups are solvable or have prime power indices
    Guo, W.
    Kondrat'ev, A. S.
    Maslova, N., V
    Miao, L.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2020, 26 (02): : 125 - 131