Existence of multiple positive solutions for m-point fractional boundary value problems with p-Laplacian operator on infinite interval

被引:10
|
作者
Liang S. [1 ,2 ]
Shi S. [1 ]
机构
[1] College of Mathematics, Jilin University
[2] Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Fixed-point theorem; Fractional differential equation; Infinite interval; Positive solution;
D O I
10.1007/s12190-011-0505-0
中图分类号
学科分类号
摘要
In this paper we consider the following m-point fractional boundary value problem with p-Laplacian operator on infinite interval D 0+ γ(ψ p(D 0+ αu(t))) + a(t)f(t,u(t))= 0, 0 < t < + ∞, u(0)=u′(0)=0, D α-1u (+∞)=∑ m-2 i=1 Β iu (ξ i), D 0+ αu(t)| t=0=0 where 0<γ≤1, 2<α≤3, D 0+ α is the standard Riemann-Liouville fractional derivative, φ p (s)=|s| p-2 s,p>1, (φ p) -1=φ q, 1/p+ 1/q=1 . 0<ξ 1<ξ 2<⋯<ξ m-2<+∞, β i ≥0, i=1,2,⋯,m-2 satisfies $0 < ∑ i=1 m-2Β iξ i α-1 < Γ(α). We establish solvability of the above fractional boundary value problems by means of the properties of the Green function and some fixed-point theorems. © 2011 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:687 / 707
页数:20
相关论文
共 50 条