Toda lattices and positive-entropy integrable systems

被引:0
|
作者
Leo T. Butler
机构
[1] Queen’s University,Department of Mathematics and Statistics
来源
Inventiones mathematicae | 2004年 / 158卷
关键词
Equivalence Class; Algebraic Number; Dynkin Diagram; Topological Entropy; Toda Lattice;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies completely integrable hamiltonian systems on T*Σ where Σ is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}^{n+1}$\end{document} bundle over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}^n$\end{document} with an ℝ-split, free abelian monodromy group. For each periodic Toda lattice there is an integrable hamiltonian system on T*Σ with positive topological entropy. Bolsinov and Taimanov’s example of an integrable geodesic flow with positive topological entropy fits into this general construction with the A(1)1 Toda lattice. Topological entropy is used to show that the flows associated to non-dual Toda lattices are typically topologically non-conjugate via an energy-preserving homeomorphism. The remaining cases are approached via the homology spectrum. An energy-preserving conjugacy implies the congruence of two rational quadratic forms over the unit group of a number field F. When F/ℚ is normal a classification of flows is obtained. In degree 3, this results from a well-known result of Gelfond; in higher degrees, the result is conditional on the conjecture that a rationally independent set of logarithms of algebraic numbers is algebraically independent over ℚ.
引用
收藏
页码:515 / 549
页数:34
相关论文
共 50 条
  • [1] Toda lattices and positive-entropy integrable systems
    Butler, LT
    [J]. INVENTIONES MATHEMATICAE, 2004, 158 (03) : 515 - 549
  • [2] Positive-entropy integrable systems and the Toda lattice, II
    Butler, Leo T.
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 149 : 491 - 538
  • [3] Asymptotic pairs in positive-entropy systems
    Blanchard, F
    Host, B
    Ruette, S
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 : 671 - 686
  • [4] Positive-entropy Hamiltonian systems on Nilmanifolds via scattering
    Butler, Leo T.
    [J]. NONLINEARITY, 2014, 27 (10) : 2479 - 2488
  • [5] Stable sets and ε-stable sets in positive-entropy systems
    Huang, Wen
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (02) : 535 - 557
  • [6] Elementary Toda orbits and integrable lattices
    Faybusovich, L
    Gekhtman, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 2905 - 2921
  • [7] Positive-entropy geodesic flows on nilmanifolds
    Butler, Leo T.
    Gelfreich, Vassili
    [J]. NONLINEARITY, 2008, 21 (07) : 1423 - 1434
  • [8] Integrable Hamiltonian systems with positive topological entropy
    Liu, Fei
    Chen, Cheng
    Zhang, Xiang
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (08): : 837 - 847
  • [9] Integrable dynamics of Toda type on square and triangular lattices
    Santini, P. M.
    Doliwa, A.
    Nieszporski, M.
    [J]. PHYSICAL REVIEW E, 2008, 77 (05):
  • [10] Canonical transformations of the extended phase space, Toda lattices and the Stackel family of integrable systems
    Tsiganov, AV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (22): : 4169 - 4182