Shape memory polymers (SMPs) are polymers that can recover a large pre-deformed shape in response to environmental stimuli, such as temperature, light, etc. For a thermally triggered (or activated) amorphous SMP, the pre-deformation and recovery of the shape require the temperature of the material to traverse the glass transition temperature Tg under constrained or free conditions. In this paper, effects of thermal rates on the thermomechanical behaviors of amorphous SMPs are investigated. Under uniaxial compression, during a temperature cycle (cooling followed by heating), the stress decreases to zero as the temperature decreases to below the glass transition temperature, and increases to a value larger than the initial stress (termed stress overshoot) as the temperature is raised above the glass transition temperature. These observations are examined by a thermoviscoelasticity model that couples the nonequilibrium structural relaxation and temperature dependent viscoelastic behavior of the material. In addition, using this model, stress-temperature behaviors during temperature cycles with various thermal rate conditions and tensile loading conditions are studied.