A discrete element method (DEM)-based approach to simulating particle breakage

被引:0
|
作者
Du-Min Kuang
Zhi-Lin Long
Ikechukwu Ogwu
Zhuo Chen
机构
[1] Xiangtan University,College of Civil Engineering and Mechanics
来源
Acta Geotechnica | 2022年 / 17卷
关键词
Discrete element method; Particle breakage; Particle cutting;
D O I
暂无
中图分类号
学科分类号
摘要
An approach for particle breakage simulation based on the framework of discrete element method was proposed in the current study. Convex polyhedron blocks were adopted as elementary particles for the complex particle shapes, and the variability of particle breakage strength is modeled using the invertible function method. Additionally, the traditional modified “Brazilian” criterion was adopted as the breakage criterion. Under the assumption that the eventual fractures within a particle can be determined according to the contact points and the centroid of the particle, once a target particle fulfilled the breakage criterion, it was cut into several fragments by a series of virtual cutting faces, which are consistent with the eventual fractures. With this, the production of local stress and the non-conservation of mass and volume can be avoided. A pre-defined fragmentation mode was also unnecessary for this approach. A series of numerical triaxial tests adopting this new presented approach was then conducted according to the configurations reported in the literature and comparisons made with experimental results. It revealed that while the presented approach is capable of reproducing the macroscopic shear responses and particle breakage characteristics of breakable particle assemblies, some fragmentation modes of particles such as surface grinding and corner abrasion cannot be captured using this approach, presenting an area for future investigation.
引用
收藏
页码:2751 / 2764
页数:13
相关论文
共 50 条
  • [1] A discrete element method (DEM)-based approach to simulating particle breakage
    Kuang, Du-Min
    Long, Zhi-Lin
    Ogwu, Ikechukwu
    Chen, Zhuo
    ACTA GEOTECHNICA, 2022, 17 (07) : 2751 - 2764
  • [2] A Simulation Method for Particle Breakage with Random Fragment Size Based on Discrete Element Method
    Zhao F.-X.
    Chi S.-C.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2023, 44 (03): : 408 - 414
  • [3] Study on the particle breakage of ballast based on a GPU accelerated discrete element method
    GuangYu Liu
    WenJie Xu
    QiCheng Sun
    Nicolin Govender
    Geoscience Frontiers, 2020, (02) : 461 - 471
  • [4] Study on the particle breakage of ballast based on a GPU accelerated discrete element method
    Liu, Guang-Yu
    Xu, Wen-Jie
    Sun, Qi-Cheng
    Govender, Nicolin
    GEOSCIENCE FRONTIERS, 2020, 11 (02) : 461 - 471
  • [5] A discrete element method-based approach to predict the breakage of coal
    Gupta, Varun
    Sun, Xin
    Xu, Wei
    Sarv, Hamid
    Farzan, Hamid
    ADVANCED POWDER TECHNOLOGY, 2017, 28 (10) : 2665 - 2677
  • [6] Study on the particle breakage of ballast based on a GPU accelerated discrete element method
    Guang-Yu Liu
    Wen-Jie Xu
    Qi-Cheng Sun
    Nicolin Govender
    Geoscience Frontiers, 2020, 11 (02) : 461 - 471
  • [7] Simulating breakage tests using the discrete element method with polyhedral particles
    Alan A. de Arruda Tino
    Luís Marcelo Tavares
    Computational Particle Mechanics, 2022, 9 : 811 - 823
  • [8] Simulating breakage tests using the discrete element method with polyhedral particles
    de Arruda Tino, Alan A.
    Tavares, Luis Marcelo
    COMPUTATIONAL PARTICLE MECHANICS, 2022, 9 (04) : 811 - 823
  • [9] A stochastic particle replacement strategy for simulating breakage in DEM
    Tavares, Luis Marcelo
    das Chagas, Anderson S.
    POWDER TECHNOLOGY, 2021, 377 : 222 - 232
  • [10] A texture inheritance model for spherical particles in particle replacement method (PRM) schemes for breakage in discrete element method (DEM) simulations
    Hirschberger, Paul
    Vo, Thu Trang
    Peuker, Urs
    Kruggel-Emden, Harald
    MINERALS ENGINEERING, 2024, 205