Hypersurfaces in Spheres with Finite Total Curvature

被引:0
|
作者
Peng Zhu
机构
[1] Jiangsu University of Technology,School of Mathematics and Physics
来源
Results in Mathematics | 2019年 / 74卷
关键词
Reduced ; cohomology; hypersurfaces in spheres; total curvature; Primary 53C20; Secondary 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that M is a complete noncompact hypersurface in a sphere Sn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}^{n+1}$$\end{document}(n≥3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n\ge 3)$$\end{document} with finite total curvature. We show that each p-th space of reduced L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-cohomology on M has finite dimension, for 0≤p≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le p\le n$$\end{document}. This result solves the conjecture posed in Zhu (Ann Braz Acad Sci 88:2053–2065, 2016).
引用
收藏
相关论文
共 50 条