Normal deduction in the intuitionistic linear logic

被引:0
|
作者
G. Mints
机构
[1] Department of Philosophy,
[2] Stanford University,undefined
[3] Stanford,undefined
[4] CA 94305,undefined
[5] USA e-mail:mints@csli.stanford.edu ,undefined
来源
关键词
Mathematics Subject Classification (1991):F05, 03B45;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a natural deduction system NDIL for the second order intuitionistic linear logic which admits normalization and has a subformula property. NDIL is an extension of the system for !-free multiplicative linear logic constructed by the author and elaborated by A. Babaev. Main new feature here is the treatment of the modality !. It uses a device inspired by D. Prawitz' treatment of S4 combined with a construction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $<\Gamma>$\end{document} introduced by the author to avoid cut-like constructions used in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\otimes$\end{document}-elimination and global restrictions employed by Prawitz. Normal form for natural deduction is obtained by Prawitz translation of cut-free sequent derivations.
引用
收藏
页码:415 / 425
页数:10
相关论文
共 50 条