A Lattice-Boltzmann model for suspensions of self-propelling colloidal particles

被引:0
|
作者
S. Ramachandran
P. B. Sunil Kumar
I. Pagonabarraga
机构
[1] Indian Institute of Technology Madras,Department of Physics
[2] University of Southern Denmark,MEMPHYS
[3] Universitat de Barcelona,Center for Biomembrane Physics
来源
关键词
83.10.Pp Particle dynamics; 83.80.Hj Suspensions, dispersions, pastes, slurries, colloids; 05.10.-a Computational methods in statistical physics and nonlinear dynamics; 68.05.Cf Structure: measurements and simulations;
D O I
暂无
中图分类号
学科分类号
摘要
We present a Lattice-Boltzmann method for simulating self-propelling (active) colloidal particles in two dimensions. Active particles with symmetric and asymmetric force distribution on their surface are considered. The velocity field generated by a single active particle, changing its orientation randomly, and the different time scales involved are characterized in detail. The steady-state speed distribution in the fluid, resulting from the activity, is shown to deviate considerably from the equilibrium distribution.
引用
收藏
页码:151 / 158
页数:7
相关论文
共 50 条
  • [1] A Lattice-Boltzmann model for suspensions of self-propelling colloidal particles
    Ramachandran, S.
    Kumar, P. B. Sunil
    Pagonabarraga, I.
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2006, 20 (02): : 151 - 158
  • [2] MODELLIZATION OF SELF-PROPELLING PARTICLES WITH A COUPLED MAP LATTICE MODEL
    HEMMINGSSON, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (15): : 4245 - 4250
  • [3] Lattice-Boltzmann methods for suspensions of solid particles
    Ladd, Anthony J. C.
    [J]. MOLECULAR PHYSICS, 2015, 113 (17-18) : 2531 - 2537
  • [4] Simulating solid colloidal particles using the lattice-Boltzmann method
    Heemels, MW
    Hagen, MHJ
    Lowe, CP
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 164 (01) : 48 - 61
  • [5] Lattice Boltzmann model for self-propelling of a liquid slug between two non-parallel plates
    [J]. Min, Q. (minq86@tsinghua.edu.cn), 1600, Science Press (34):
  • [6] Circular Motion of Asymmetric Self-Propelling Particles
    Kuemmel, Felix
    ten Hagen, Borge
    Wittkowski, Raphael
    Buttinoni, Ivo
    Eichhorn, Ralf
    Volpe, Giovanni
    Loewen, Hartmut
    Bechinger, Clemens
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (19)
  • [7] Self-propelling particles that transportthrombin to manage hemorrhage
    Baylis, J.
    Yeon, J. H.
    Thomson, M. H.
    Kazerooni, A.
    Wang, X.
    John, A. E.
    Lim, E. B.
    Chien, D.
    Lee, A.
    Zhang, J. Q.
    Piret, J. M.
    Machan, L. S.
    Burke, T. F.
    White, N. J.
    Kastrup, C. J.
    [J]. JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2015, 13 : 888 - 888
  • [8] Hydrodynamic model for a system of self-propelling particles with conservative kinematic constraints
    Kulinskii, VL
    Ratushnaya, VI
    Zvelindovsky, AV
    Bedeaux, D
    [J]. EUROPHYSICS LETTERS, 2005, 71 (02): : 207 - 213
  • [9] Lattice Boltzmann and Jones matrix calculations for the determination of the director field structure in self-propelling nematic droplets
    Bahr, Christian
    [J]. PHYSICAL REVIEW E, 2021, 104 (04)
  • [10] Dynamic regimes of hydrodynamically coupled self-propelling particles
    Llopis, I.
    Pagonabarraga, I.
    [J]. EUROPHYSICS LETTERS, 2006, 75 (06): : 999 - 1005