Noncommutative Instantons on the 4-Sphere¶from Quantum Groups

被引:0
|
作者
F. Bonechi
N. Ciccoli
M. Tarlini
机构
[1] INFN Sezione di Firenze,
[2] Dipartimento di Fisica,undefined
[3] Università di Firenze,undefined
[4] Via G. Sansone 1,undefined
[5] ¶50019 Sesto F.no (Fi),undefined
[6] Italy. E-mail: bonechi@fi.infn.it; tarlini@fi.infn.it,undefined
[7] Dipartimento di Matematica e Informatica,undefined
[8] Università di Perugia,undefined
[9] via Vanvitelli 1,undefined
[10] 06123 Perugia,undefined
[11] Italy. E-mail: ciccoli@dipmat.unipg.it,undefined
来源
关键词
Vector Bundle; Group Theory; Quantum Group; Unitary Representation; Quantum Vector;
D O I
暂无
中图分类号
学科分类号
摘要
We describe an approach to the noncommutative instantons on the 4-sphere based on quantum group theory. We quantize the Hopf bundle ?7→?4 making use of the concept of quantum coisotropic subgroups. The analysis of the semiclassical Poisson–Lie structure of U(4) shows that the diagonal SU(2) must be conjugated to be properly quantized. The quantum coisotropic subgroup we obtain is the standard SUq(2); it determines a new deformation of the 4-sphere ∑4q as the algebra of coinvariants in ?q7. We show that the quantum vector bundle associated to the fundamental corepresentation of SUq(2) is finitely generated and projective and we compute the explicit projector. We give the unitary representations of ∑4q, we define two 0-summable Fredholm modules and we compute the Chern–Connes pairing between the projector and their characters. It comes out that even the zero class in cyclic homology is non-trivial.
引用
收藏
页码:419 / 432
页数:13
相关论文
共 50 条