Generalized Vector Quasivariational Inclusion Problems with Moving Cones

被引:0
|
作者
P. H. Sach
L. J. Lin
L. A. Tuan
机构
[1] Institute of Mathematics,Department of Mathematics
[2] National Changhua University of Education,undefined
[3] Ninh Thuan College of Pedagogy,undefined
关键词
Generalized vector quasivariational inclusion problem, Set-valued maps; Existence theorems; Moving cones; Generalized concavity;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the generalized vector quasivariational inclusion Problem (P1) (resp. Problem (P2)) of finding a point (z0,x0) of a set E×K such that (z0,x0)∈B(z0,x0)×A(z0,x0) and, for all η∈A(z0,x0), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{l}F(z_0,x_0,\eta)\subset G(z_0,x_0,x_0)+C(z_0,x_0)\cr \mathrm{[resp.}F(z_0,x_0,x_0)\subset G(z_0,x_0,\eta)+C(z_0,x_0)],\end{array}$$\end{document} where A:E×K→2K, B:E×K→2E, C:E×K→2Y, F,G:E×K×K→2Y are some set-valued maps and Y is a topological vector space. The nonemptiness and compactness of the solution sets of Problems (P1) and (P2) are established under the verifiable assumption that the graph of the moving cone C is closed and that the set-valued maps F and G are C-semicontinuous in a new sense (weaker than the usual sense of semicontinuity).
引用
收藏
页码:607 / 620
页数:13
相关论文
共 50 条
  • [1] Generalized Vector Quasivariational Inclusion Problems with Moving Cones
    Sach, P. H.
    Lin, L. J.
    Tuan, L. A.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 147 (03) : 607 - 620
  • [2] Generalized Vector Complementarity Problems with Moving Cones
    Ceng, Lu-Chuan
    Lin, Yen-Cherng
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [3] Generalized Vector Complementarity Problems with Moving Cones
    Lu-Chuan Ceng
    Yen-Cherng Lin
    [J]. Journal of Inequalities and Applications, 2009
  • [4] GENERALIZED QUASIVARIATIONAL INCLUSION PROBLEMS WITH APPLICATIONS
    Wang, San-Hua
    Huang, Nan-Jing
    O'Regan, Donal
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2014, 15 (06) : 1261 - 1277
  • [5] Sensitivity in mixed generalized vector quasiequilibrium problems with moving cones
    Pham Huu Sach
    Le Anh Tuan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (03) : 713 - 724
  • [6] On the stability of generalized vector quasivariational inequality problems
    Li, SJ
    Chen, GY
    Teo, KL
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 113 (02) : 283 - 294
  • [7] On the Stability of Generalized Vector Quasivariational Inequality Problems
    S.J. Li
    G.Y. Chen
    K.L. Teo
    [J]. Journal of Optimization Theory and Applications, 2002, 113 : 283 - 295
  • [8] On generalized vector quasivariational-like inequality problems
    Abdul Khaliq
    Mohammad Rashid
    [J]. Fixed Point Theory and Applications, 2005
  • [9] On generalized vector quasivariational-like inequality problems
    Khaliq, Abdul
    Rashid, Mohammad
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2005, 2005 (03) : 243 - 255
  • [10] Systems of Generalized Quasivariational Inclusion Problems with Applications in LΓ-Spaces
    Yang, Ming-ge
    Xu, Jiu-ping
    Huang, Nan-jing
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2011,