Magneto-Optical Characteristics of Streptavidin-Coated Fe3O4@Au Core-Shell Nanoparticles for Potential Applications on Biomedical Assays

被引:0
|
作者
Chin-Wei Lin
Jian-Ming Chen
You-Jun Lin
Ling-Wei Chao
Sin-Yi Wei
Chiu-Hsien Wu
Chien-Chung Jeng
Li-Min Wang
Kuen-Lin Chen
机构
[1] National Taiwan University,Graduate institute of applied physics
[2] National Chung Hsing University,Institute of Nanoscience
[3] National Chung Hsing University,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Recently, gold-coated magnetic nanoparticles have drawn the interest of researchers due to their unique magneto-plasmonic characteristics. Previous research has found that the magneto-optical Faraday effect of gold-coated magnetic nanoparticles can be effectively enhanced because of the surface plasmon resonance of the gold shell. Furthermore, gold-coated magnetic nanoparticles are ideal for biomedical applications because of their high stability and biocompatibility. In this work, we synthesized Fe3O4@Au core-shell nanoparticles and coated streptavidin (STA) on the surface. Streptavidin is a protein which can selectively bind to biotin with a strong affinity. STA is widely used in biotechnology research including enzyme-linked immunosorbent assay (ELISA), time-resolved immunofluorescence (TRFIA), biosensors, and targeted pharmaceuticals. The Faraday magneto-optical characteristics of the biofunctionalized Fe3O4@Au nanoparticles were measured and studied. We showed that the streptavidin-coated Fe3O4@Au nanoparticles still possessed the enhanced magneto-optical Faraday effect. As a result, the possibility of using biofunctionalized Fe3O4@Au nanoparticles for magneto-optical biomedical assays should be explored.
引用
收藏
相关论文
共 50 条
  • [1] Magneto-Optical Characteristics of Streptavidin-Coated Fe3O4@Au Core-Shell Nanoparticles for Potential Applications on Biomedical Assays
    Lin, Chin-Wei
    Chen, Jian-Ming
    Lin, You-Jun
    Chao, Ling-Wei
    Wei, Sin-Yi
    Wu, Chiu-Hsien
    Jeng, Chien-Chung
    Wang, Li-Min
    Chen, Kuen-Lin
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [2] Synthesis of Fe3O4@Au core-shell nanoparticles
    Solovieva, A. Yu
    Ioni, Yu V.
    Baskakov, A. O.
    Starchikov, S. S.
    Avilov, A. S.
    Lyubutin, I. S.
    Gubin, S. P.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2017, 62 (06) : 711 - 714
  • [3] Monodispersed core-shell Fe3O4@Au nanoparticles
    Wang, LY
    Luo, J
    Fan, Q
    Suzuki, M
    Suzuki, IS
    Engelhard, MH
    Lin, YH
    Kim, N
    Wang, JQ
    Zhong, CJ
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (46): : 21593 - 21601
  • [4] Synthesis of Fe3O4@Au core–shell nanoparticles
    A. Yu. Solovieva
    Yu. V. Ioni
    A. O. Baskakov
    S. S. Starchikov
    A. S. Avilov
    I. S. Lyubutin
    S. P. Gubin
    Russian Journal of Inorganic Chemistry, 2017, 62 : 711 - 714
  • [5] Enhanced magneto-optical properties of Fe3O4@Au nanoparticles and its reverse core-shell nanostructure embedded in host matrix SiO2
    Senbeta, Teshome
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2023, 57
  • [6] Differential response of macrophages to core-shell Fe3O4@Au nanoparticles and nanostars
    Xia, Wei
    Song, Hyon-Min
    Wei, Qingshan
    Wei, Alexander
    NANOSCALE, 2012, 4 (22) : 7143 - 7148
  • [7] A catechol biosensor based on immobilizing laccase to Fe3O4@Au core-shell nanoparticles
    Karami, Changiz
    Taher, Mohammad Ali
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 129 (84-90) : 84 - 90
  • [8] Spectroscopic characterization of magnetic Fe3O4@Au core shell nanoparticles
    Fouad, Dina M.
    El-Said, Waleed A.
    Mohamed, Mona B.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2015, 140 : 392 - 397
  • [9] Efficient synthesis of core@shell Fe3O4@Au nanoparticles
    Alonso-Cristobal, Paulino
    Laurenti, Marco
    Lopez-Cabarcos, Enrique
    Rubio-Retama, Jorge
    MATERIALS RESEARCH EXPRESS, 2015, 2 (07)
  • [10] Multi-functional core-shell Fe3O4@Au nanoparticles for cancer diagnosis and therapy
    Rajkumar, S.
    Prabaharan, M.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2019, 174 : 252 - 259