Entropic Fluctuations of Quantum Dynamical Semigroups

被引:0
|
作者
V. Jakšić
C.-A. Pillet
M. Westrich
机构
[1] McGill University,Department of Mathematics and Statistics
[2] Aix-Marseille Université,undefined
[3] CNRS,undefined
[4] CPT,undefined
[5] UMR 7332,undefined
[6] Case 907,undefined
[7] Université de Toulon,undefined
[8] CNRS,undefined
[9] CPT,undefined
[10] UMR 7332,undefined
[11] FRUMAM,undefined
来源
关键词
Quantum markovian dynamics; Entropy production; Nonequilibrium steady states; Fluctuation theorem; Detailed balance; Weak coupling limit; Davies generator;
D O I
暂无
中图分类号
学科分类号
摘要
We study a class of finite dimensional quantum dynamical semigroups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\mathrm {e}^{t\mathcal{L}}\}_{t\geq0}$\end{document} whose generators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{L}$\end{document} are sums of Lindbladians satisfying the detailed balance condition. Such semigroups arise in the weak coupling (van Hove) limit of Hamiltonian dynamical systems describing open quantum systems out of equilibrium. We prove a general entropic fluctuation theorem for this class of semigroups by relating the cumulant generating function of entropy transport to the spectrum of a family of deformations of the generator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{L}}$\end{document}. We show that, besides the celebrated Evans-Searles symmetry, this cumulant generating function also satisfies the translation symmetry recently discovered by Andrieux et al., and that in the linear regime near equilibrium these two symmetries yield Kubo’s and Onsager’s linear response relations.
引用
收藏
页码:153 / 187
页数:34
相关论文
共 50 条
  • [1] Entropic Fluctuations of Quantum Dynamical Semigroups
    Jaksic, V.
    Pillet, C. -A.
    Westrich, M.
    JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (1-2) : 153 - 187
  • [2] ENTROPIC FLUCTUATIONS IN GAUSSIAN DYNAMICAL SYSTEMS
    Jaksic, V.
    Pillet, C. -A.
    Shirikyan, A.
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (03) : 335 - 376
  • [3] AVERAGING OF QUANTUM DYNAMICAL SEMIGROUPS
    Sakbaev, V. Zh.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 164 (03) : 1215 - 1221
  • [4] Invitation to quantum dynamical semigroups
    Alicki, R
    DYNAMICS OF DISSIPATION, 2002, 597 : 239 - 264
  • [5] Stability of Quantum Dynamical Semigroups
    Bhat, B. V. Rajarama
    Srivastava, Sachi
    OPERATOR SEMIGROUPS MEET COMPLEX ANALYSIS, HARMONIC ANALYSIS AND MATHEMATICAL PHYSICS, 2015, 250 : 67 - 85
  • [6] IRREDUCIBLE QUANTUM DYNAMICAL SEMIGROUPS
    EVANS, DE
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 54 (03) : 293 - 297
  • [7] Quantum Dynamical Semigroups and Decoherence
    Hellmich, Mario
    ADVANCES IN MATHEMATICAL PHYSICS, 2011, 2011
  • [8] Quantum dynamical semigroups and stability
    Kumar, Dharmendra
    Sinha, Kalyan B.
    Srivastava, Sachi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (01)
  • [9] GENERATORS OF QUANTUM DYNAMICAL SEMIGROUPS
    LINDBLAD, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 48 (02) : 119 - 130
  • [10] Averaging of quantum dynamical semigroups
    V. Zh. Sakbaev
    Theoretical and Mathematical Physics, 2010, 164 : 1215 - 1221