Existence of Solution for a Singular Elliptic Equation of Kirchhoff Type

被引:0
|
作者
Qingwei Li
Wenjie Gao
Yuzhu Han
机构
[1] Dalian Maritime University,Department of Mathematics
[2] Jilin University,School of Mathematics
来源
关键词
Nonlocal; singular; existence; uniqueness; 35K55; 35J60; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
We study both the existence and uniqueness of nonnegative solution to a singular elliptic problem of Kirchhoff type, whose model is: -B12∫Ω|∇u|2dxΔu=h(x)uγ,x∈Ω,u>0,x∈Ω,u=0,x∈∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -B\left( \dfrac{1}{2}\displaystyle \int _\Omega |\nabla u|^2\mathrm {d}x\right) \Delta u=\dfrac{h(x)}{u^\gamma }, &{}\quad x\in \Omega ,\\ u>0, &{}\quad x\in \Omega ,\\ u=0, &{}\quad x\in \partial \Omega , \end{array}\right. } \end{aligned}$$\end{document}where Ω⊂Rn(n≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^n(n\ge 1)$$\end{document} is a smooth bounded domain, γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >1$$\end{document}, h∈L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\in L^1(\Omega )$$\end{document} is positive (i.e., h(x)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(x)>0$$\end{document} a.e. in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}), B:R+→R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B : \mathbb {R}^+\rightarrow \mathbb {R}^+$$\end{document} is a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-continuous function with positive lower bound. A necessary and sufficient condition will be given for the existence of weak solution of the general nonlocal singular elliptic with strong singularity. In addition, we prove that the solution is unique under some suitable conditions.
引用
收藏
相关论文
共 50 条