We study both the existence and uniqueness of nonnegative solution to a singular elliptic problem of Kirchhoff type, whose model is: -B12∫Ω|∇u|2dxΔu=h(x)uγ,x∈Ω,u>0,x∈Ω,u=0,x∈∂Ω,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -B\left( \dfrac{1}{2}\displaystyle \int _\Omega |\nabla u|^2\mathrm {d}x\right) \Delta u=\dfrac{h(x)}{u^\gamma }, &{}\quad x\in \Omega ,\\ u>0, &{}\quad x\in \Omega ,\\ u=0, &{}\quad x\in \partial \Omega , \end{array}\right. } \end{aligned}$$\end{document}where Ω⊂Rn(n≥1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega \subset \mathbb {R}^n(n\ge 1)$$\end{document} is a smooth bounded domain, γ>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma >1$$\end{document}, h∈L1(Ω)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$h\in L^1(\Omega )$$\end{document} is positive (i.e., h(x)>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$h(x)>0$$\end{document} a.e. in Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega $$\end{document}), B:R+→R+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B : \mathbb {R}^+\rightarrow \mathbb {R}^+$$\end{document} is a C1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^1$$\end{document}-continuous function with positive lower bound. A necessary and sufficient condition will be given for the existence of weak solution of the general nonlocal singular elliptic with strong singularity. In addition, we prove that the solution is unique under some suitable conditions.