Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus

被引:0
|
作者
J. Andrew N. Alexander
Liam J. Worrall
Jinhong Hu
Marija Vuckovic
Nidhi Satishkumar
Raymond Poon
Solmaz Sobhanifar
Federico I. Rosell
Joshua Jenkins
Daniel Chiang
Wesley A. Mosimann
Henry F. Chambers
Mark Paetzel
Som S. Chatterjee
Natalie C. J. Strynadka
机构
[1] The University of British Columbia,Department of Biochemistry and Molecular Biology
[2] The University of British Columbia,Centre for Blood Research
[3] The University of British Columbia,HRMEM Facility
[4] University of Maryland,Department of Microbial Pathogenesis, School of Dentistry
[5] Institute of Marine and Environmental Technology,Department of Molecular Biology and Biochemistry
[6] Simon Fraser University,Division of Infectious Diseases, School of Medicine
[7] University of California,undefined
[8] San Francisco,undefined
来源
Nature | 2023年 / 613卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Broad-spectrum β-lactam antibiotic resistance in Staphylococcus aureus is a global healthcare burden1,2. In clinical strains, resistance is largely controlled by BlaR13, a receptor that senses β-lactams through the acylation of its sensor domain, inducing transmembrane signalling and activation of the cytoplasmic-facing metalloprotease domain4. The metalloprotease domain has a role in BlaI derepression, inducing blaZ (β-lactamase PC1) and mecA (β-lactam-resistant cell-wall transpeptidase PBP2a) expression3–7. Here, overcoming hurdles in isolation, we show that BlaR1 cleaves BlaI directly, as necessary for inactivation, with no requirement for additional components as suggested previously8. Cryo-electron microscopy structures of BlaR1—the wild type and an autocleavage-deficient F284A mutant, with or without β-lactam—reveal a domain-swapped dimer that we suggest is critical to the stabilization of the signalling loops within. BlaR1 undergoes spontaneous autocleavage in cis between Ser283 and Phe284 and we describe the catalytic mechanism and specificity underlying the self and BlaI cleavage. The structures suggest that allosteric signalling emanates from β-lactam-induced exclusion of the prominent extracellular loop bound competitively in the sensor-domain active site, driving subsequent dynamic motions, including a shift in the sensor towards the membrane and accompanying changes in the zinc metalloprotease domain. We propose that this enhances the expulsion of autocleaved products from the active site, shifting the equilibrium to a state that is permissive of efficient BlaI cleavage. Collectively, this study provides a structure of a two-component signalling receptor that mediates action—in this case, antibiotic resistance—through the direct cleavage of a repressor.
引用
收藏
页码:375 / 382
页数:7
相关论文
共 50 条
  • [1] Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus
    Alexander, J. Andrew N.
    Worrall, Liam J.
    Hu, Jinhong
    Vuckovic, Marija
    Satishkumar, Nidhi
    Poon, Raymond
    Sobhanifar, Solmaz
    Rosell, Federico I.
    Jenkins, Joshua
    Chiang, Daniel
    Mosimann, Wesley A.
    Chambers, Henry F.
    Paetzel, Mark
    Chatterjee, Som S.
    Strynadka, Natalie C. J.
    [J]. NATURE, 2023, 613 (7943) : 375 - +
  • [2] Inoculum effect of methicillin-susceptible Staphylococcus aureus against broad-spectrum beta-lactam antibiotics
    Kyoung-Ho Song
    Sook-In Jung
    Shinwon Lee
    Sohee Park
    Eu Suk Kim
    Kyung-Hwa Park
    Wan Beom Park
    Pyoeng Gyun Choe
    Young Keun Kim
    Yee Gyung Kwak
    Yeon-Sook Kim
    Hee-Chang Jang
    Sungmin Kiem
    Hye-In Kim
    Hong Bin Kim
    [J]. European Journal of Clinical Microbiology & Infectious Diseases, 2019, 38 : 67 - 74
  • [3] Inoculum effect of methicillin-susceptible Staphylococcus aureus against broad-spectrum beta-lactam antibiotics
    Song, Kyoung-Ho
    Jung, Sook-In
    Lee, Shinwon
    Park, Sohee
    Kim, Eu Suk
    Park, Kyung-Hwa
    Park, Wan Beom
    Choe, Pyoeng Gyun
    Kim, Young Keun
    Kwak, Yee Gyung
    Kim, Yeon-Sook
    Jang, Hee-Chang
    Kiem, Sungmin
    Kim, Hye-In
    Kim, Hong Bin
    [J]. EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2019, 38 (01) : 67 - 74
  • [4] The molecular basis of broad-spectrum powdery mildew resistance
    Panstruga, R.
    Consonni, C.
    Humphry, M.
    Lorek, J.
    Becker, K.
    Bednarek, P.
    [J]. PHYTOPATHOLOGY, 2010, 100 (06) : S158 - S158
  • [5] Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus
    Ghssein, Ghassan
    Brutesco, Catherine
    Ouerdane, Laurent
    Fojcik, Clementine
    Izaute, Amelie
    Wang, Shuanglong
    Hajjar, Christine
    Lobinski, Ryszard
    Lemaire, David
    Richaud, Pierre
    Voulhoux, Rome
    Espaillat, Akbar
    Cava, Felipe
    Pignol, David
    Borezee-Durant, Elise
    Arnoux, Pascal
    [J]. SCIENCE, 2016, 352 (6289) : 1105 - 1109
  • [6] Molecular Basis of Non-β-Lactam Antibiotics Resistance in Staphylococcus aureus
    Lade, Harshad
    Joo, Hwang-Soo
    Kim, Jae-Seok
    [J]. ANTIBIOTICS-BASEL, 2022, 11 (10):
  • [7] Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus
    Daniel Lim
    Natalie C.J. Strynadka
    [J]. Nature Structural Biology, 2002, 9 : 870 - 876
  • [8] Structural basis for the β-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus
    Lim, D
    Strynadka, NCJ
    [J]. NATURE STRUCTURAL BIOLOGY, 2002, 9 (11) : 870 - 876
  • [9] Altered PBP4 and GdpP functions synergistically mediate MRSA-like high-level, broad-spectrum β-lactam resistance in Staphylococcus aureus
    Lai, Li-Yin
    Satishkumar, Nidhi
    Cardozo, Sasha
    Hemmadi, Vijay
    Marques, Leonor B.
    Huang, Liusheng
    Filipe, Sergio R.
    Pinho, Mariana G.
    Chambers, Henry F.
    Chatterjee, Som S.
    [J]. MBIO, 2024, 15 (05):
  • [10] Supramolecular antibiotics: a strategy for conversion of broad-spectrum to narrow-spectrum antibiotics for Staphylococcus aureus
    Koyasseril-Yehiya, Thameez M.
    Garcia-Heredia, Alam
    Anson, Francesca
    Rangadurai, Poornima
    Siegrist, M. Sloan
    Thayumanavan, S.
    [J]. NANOSCALE, 2020, 12 (40) : 20693 - 20698