Multiplicity of periodic bouncing solutions for generalized impact Hamiltonian systems

被引:0
|
作者
Delong Huang
Fei Guo
机构
[1] Tianjin University,School of Mathematics
来源
Boundary Value Problems | / 2019卷
关键词
Generalized Nonsmooth Saddle Point Theorem; Periodic bouncing solution; Impact Hamiltonian systems; Multiplicity; 34C25; 49J35; 70H05; 74M20; 74G35;
D O I
暂无
中图分类号
学科分类号
摘要
Applying the Generalized Nonsmooth Saddle Point Theorem, we obtain multiple nontrivial periodic bouncing solutions for systems x¨=f(t,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ddot{x}=f(t,x)$\end{document} with new conditions. In particular, we generalize the collision axis from x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=0$\end{document} to the axis x=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=a$\end{document}, where a is an arbitrary constant.
引用
收藏
相关论文
共 50 条