Homogenization of layered materials with rigid components in single-slip finite crystal plasticity

被引:0
|
作者
Fabian Christowiak
Carolin Kreisbeck
机构
[1] Universität Regensburg,Fakultät für Mathematik
[2] Universiteit Utrecht,Mathematisch Instituut
关键词
49J45 (primary); 74Q05; 74C15;
D O I
暂无
中图分类号
学科分类号
摘要
We determine the effective behavior of a class of composites in finite-strain crystal plasticity, based on a variational model for materials made of fine parallel layers of two types. While one component is completely rigid in the sense that it admits only local rotations, the other one is softer featuring a single active slip system with linear self-hardening. As a main result, we obtain explicit homogenization formulas by means of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence. Due to the anisotropic nature of the problem, the findings depend critically on the orientation of the slip direction relative to the layers, leading to three qualitatively different regimes that involve macroscopic shearing and blocking effects. The technical difficulties in the proofs are rooted in the intrinsic rigidity of the model, which translates into a non-standard variational problem constraint by non-convex partial differential inclusions. The proof of the lower bound requires a careful analysis of the admissible microstructures and a new asymptotic rigidity result, whereas the construction of recovery sequences relies on nested laminates.
引用
收藏
相关论文
共 50 条
  • [1] Homogenization of layered materials with rigid components in single-slip finite crystal plasticity
    Christowiak, Fabian
    Kreisbeck, Carolin
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (03)
  • [2] Mixed analytical–numerical relaxation in finite single-slip crystal plasticity
    Carsten Carstensen
    Sergio Conti
    Antonio Orlando
    [J]. Continuum Mechanics and Thermodynamics, 2008, 20 : 275 - 301
  • [3] Asymptotic analysis of single-slip crystal plasticity in the limit of vanishing thickness and rigid elasticity
    Engl, Dominik
    Kroemer, Stefan
    Kruzik, Martin
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2024,
  • [4] Mixed analytical-numerical relaxation in finite single-slip crystal plasticity
    Carstensen, Carsten
    Conti, Sergio
    Orlando, Antonio
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 2008, 20 (05) : 275 - 301
  • [5] On the role of dislocation conservation in single-slip crystal plasticity
    Hirschberger, C. B.
    Peerlings, R. H. J.
    Brekelmans, W. A. M.
    Geers, M. G. D.
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2011, 19 (08)
  • [6] Scaling relation for low energy states in a single-slip model in finite crystal plasticity
    Schubert, Tobias
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (11): : 1174 - 1189
  • [7] On the interplay of anisotropy and geometry for polycrystals in single-slip crystal plasticity
    Engl, Dominik
    Kreisbeck, Carolin
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (11):
  • [8] Material forces in computational single-slip crystal-plasticity
    Menzel, A
    Denzer, R
    Steinmann, P
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2005, 32 (3-4) : 446 - 454
  • [9] Homogenization in BV of a model for layered composites in finite crystal plasticity
    Davoli, Elisa
    Ferreira, Rita
    Kreisbeck, Carolin
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (03) : 441 - 473
  • [10] On the comparison of two approaches to compute material forces for inelastic materials. Application to single-slip crystal-plasticity
    Menzel, A
    Denzer, R
    Steinmann, P
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (48-51) : 5411 - 5428