Time-dependent fractional-derivative problems \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document} $D_t^\alpha u + Au = f$ \end{document} are considered, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document} $D_t^\alpha$ \end{document} is a Caputo fractional derivative of order α ∈ (0, 1)∪(1, 2) and A is a classical elliptic operator, and appropriate boundary and initial conditions are applied. The regularity of solutions to this class of problems is discussed, and it is shown that assuming more regularity than is generally true—as many researchers do—places a surprisingly severe restriction on the problem.