A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems

被引:0
|
作者
Yong Wang
Zixing Cai
机构
[1] Central South University,School of Information Science and Engineering
关键词
constrained optimization problems; constrainthandling technique; particle swarm optimization; differential evolution;
D O I
暂无
中图分类号
学科分类号
摘要
In the real-world applications, most optimization problems are subject to different types of constraints. These problems are known as constrained optimization problems (COPs). Solving COPs is a very important area in the optimization field. In this paper, a hybrid multi-swarm particle swarm optimization (HMPSO) is proposed to deal with COPs. This method adopts a parallel search operator in which the current swarm is partitioned into several subswarms and particle swarm optimization (PSO) is severed as the search engine for each sub-swarm. Moreover, in order to explore more promising regions of the search space, differential evolution (DE) is incorporated to improve the personal best of each particle. First, the method is tested on 13 benchmark test functions and compared with three stateof-the-art approaches. The simulation results indicate that the proposed HMPSO is highly competitive in solving the 13 benchmark test functions. Afterward, the effectiveness of some mechanisms proposed in this paper and the effect of the parameter setting were validated by various experiments. Finally, HMPSO is further applied to solve 24 benchmark test functions collected in the 2006 IEEE Congress on Evolutionary Computation (CEC2006) and the experimental results indicate that HMPSO is able to deal with 22 test functions.
引用
收藏
页码:38 / 52
页数:14
相关论文
共 50 条
  • [1] A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems
    Wang, Yong
    Cai, Zixing
    [J]. FRONTIERS OF COMPUTER SCIENCE IN CHINA, 2009, 3 (01): : 38 - 52
  • [2] A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems
    Ang, Koon Meng
    Lim, Wei Hong
    Isa, Nor Ashidi Mat
    Tiang, Sew Sun
    Wong, Chin Hong
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2020, 140
  • [3] Dynamic Multi-Swarm Particle Swarm Optimization for Multi-Objective Optimization Problems
    Liang, J. J.
    Qu, B. Y.
    Suganthan, P. N.
    Niu, B.
    [J]. 2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [4] A Multi-Swarm Particle Swarm Optimization to Solve DNA Encoding in DNA Computation
    Xiao, Jianhua
    Cheng, Zhen
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (05) : 1129 - 1136
  • [5] A Multi-Swarm Cooperative Perturbed Particle Swarm Optimization
    Yang, Xiangjun
    Zhao, Yilong
    Chen, Yuchuang
    Zhao, Xinchao
    [J]. ADVANCED RESEARCH ON AUTOMATION, COMMUNICATION, ARCHITECTONICS AND MATERIALS, PTS 1 AND 2, 2011, 225-226 (1-2): : 619 - 622
  • [6] Fully Learned Multi-swarm Particle Swarm Optimization
    Niu, Ben
    Huang, Huali
    Ye, Bin
    Tan, Lijing
    Liang, Jane Jing
    [J]. ADVANCES IN SWARM INTELLIGENCE, PT1, 2014, 8794 : 150 - 157
  • [7] Dynamic Multi-swarm Global Particle Swarm Optimization
    Tang, Yichao
    Li, Xiong
    Zhang, Yinglong
    Xia, Xuewen
    Gui, Ling
    [J]. 2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1030 - 1037
  • [8] Multi-swarm Particle Swarm Optimization for Payment Scheduling
    Li, Xiao-Miao
    Lin, Ying
    Chen, Wei-Neng
    Zhang, Jun
    [J]. 2017 SEVENTH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST2017), 2017, : 284 - 291
  • [9] Dynamic multi-swarm global particle swarm optimization
    Xia, Xuewen
    Tang, Yichao
    Wei, Bo
    Zhang, Yinglong
    Gui, Ling
    Li, Xiong
    [J]. COMPUTING, 2020, 102 (07) : 1587 - 1626
  • [10] Multi-swarm Particle Swarm Optimizer with Cauchy Mutation for Dynamic Optimization Problems
    Hu, Chengyu
    Wu, Xiangning
    Wang, Yongji
    Xie, Fuqiang
    [J]. ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2009, 5821 : 443 - +