Primary 15A86;
Secondary 15A63;
11E57;
Linear preservers;
General linear group;
Singular subspaces;
Affine group;
Rank;
Linear subspaces;
Symplectic group;
Arf invariant;
Quadratic forms;
Symmetric group;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
When \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{K}}$$\end{document} is an arbitrary field, we study the affine automorphisms of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm M}_n(\mathbb{K})}$$\end{document} that stabilize \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm GL}_n(\mathbb{K})}$$\end{document}. Using a theorem of Dieudonné on maximal affine subspaces of singular matrices, this is easily reduced to the known case of linear preservers when n > 2 or # \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{K} > 2}$$\end{document}. We include a short new proof of the more general Flanders theorem for affine subspaces of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm M}_{p,q}(\mathbb{K})}$$\end{document} with bounded rank. We also find that the group of affine transformations of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm M}_2(\mathbb{F}_2)}$$\end{document} that stabilize \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm GL}_2(\mathbb{F}_2)}$$\end{document} does not consist solely of linear maps. Using the theory of quadratic forms over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{F}_2}$$\end{document}, we construct explicit isomorphisms between it, the symplectic group \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm Sp}_4(\mathbb{F}_2)}$$\end{document} and the symmetric group \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak{S}_6}$$\end{document}.
机构:
Public Mathematics, School of Science, Jilin Institute of Chemical Technology, Jilin,132022, ChinaPublic Mathematics, School of Science, Jilin Institute of Chemical Technology, Jilin,132022, China
Yang, Chunyu
Pan, Shuping
论文数: 0引用数: 0
h-index: 0
机构:
Public Mathematics, School of Science, Jilin Institute of Chemical Technology, Jilin,132022, ChinaPublic Mathematics, School of Science, Jilin Institute of Chemical Technology, Jilin,132022, China
Pan, Shuping
Advances in Modelling and Analysis A,
2017,
54
(02):
: 373
-
383