Changes in the microhardness of ZnO, triglycine sulfate (TGS), and potassium acid phthalate (KAP) crystals after their exposure to crossed ultralow magnetic fields, i.e., the Earth’s field BEarth ≈ 50 μT and the alternating-current field \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tilde B \approx 3 \mu {\rm T}$$\end{document} orthogonal to it, have been revealed. In ZnO crystals, the microhardness increases, whereas in TGS and KAP, it decreases. A maximum change (10–15%) is reached within 1–3 h after magnetic treatment; then, the microhardness gradually recovers to its initial value for the first day. After a sufficient pause, the effect is completely reproduced under the same conditions. The resonant frequency of the pump field \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tilde B$$\end{document} corresponds to the EPR condition with a g-factor close to two. The magnetic memory exhibits a strong anisotropy: for each of the crystals, a direction is found, which, being coincident with the Earth’s magnetic field vector BEarth, causes complete or partial suppression of the effect. In ZnO and TGS crystals, these are symmetry axes 6 and 2, respectively. In the KAP crystal, it is the direction in the cleavage plane orthogonal the 2 axis. Possible physical mechanisms of the observed phenomena have been discussed.