Noncoercive convection–diffusion elliptic problems with Neumann boundary conditions

被引:0
|
作者
Jérôme Droniou
Juan-Luis Vázquez
机构
[1] Université Montpellier II,Département de Mathématiques, UMR CNRS 5149, CC 051
[2] Universidad Autónoma de Madrid,Departamento de Matemáticas
关键词
35D05; 35B30; 35J25; 35K20; 47B44;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence and uniqueness of solutions of the convective–diffusive elliptic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ -div(D\nabla u)+div({\rm V}\, u)=f $$\end{document}posed in a bounded domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega\subset {\mathbb{R}}^N$$\end{document} , with pure Neumann boundary conditions\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D\nabla u \cdot {\rm n} = ({\rm V} \cdot {\rm n})\, u \quad \quad \mbox on \partial\Omega. $$\end{document} Under the assumption that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V\in L^p(\Omega)^N$$\end{document} with p = N if N ≥ 3 (resp. p > 2 if N  =  2), we prove that the problem has a solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in H^1(\Omega)$$\end{document} if ∫Ωfdx  = 0, and also that the kernel is generated by a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{u} \in H^1(\Omega)$$\end{document} , unique up to a multiplicative constant, which satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{u} > 0$$\end{document} a.e. on Ω. We also prove that the equation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ -div(D\nabla u)+div({\rm V}\, u)+\nu \,u=f $$\end{document}has a unique solution for all ν > 0 and the map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \mapsto u$$\end{document} is an isomorphism of the respective spaces. The study is made in parallel with the dual problem, with equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ -div(D^T\nabla v) -V\cdot\nabla v=g. $$\end{document}The dependence on the data is also examined, and we give applications to solutions of nonlinear elliptic PDE with measure data and to parabolic problems.
引用
收藏
页码:413 / 434
页数:21
相关论文
共 50 条
  • [1] Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions
    Droniou, Jerome
    Vazquez, Juan-Luis
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (04) : 413 - 434
  • [2] Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions
    Chainais-Hillairet, Claire
    Droniou, Jerome
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) : 61 - 85
  • [3] A finite element method for a noncoercive elliptic problem with neumann boundary conditions
    Kavaliou, Klim
    Tobiska, Lutz
    [J]. Computational Methods in Applied Mathematics, 2012, 12 (02) : 168 - 183
  • [4] Coercive and noncoercive elliptic problems with variable exponent Laplacian under Robin boundary conditions
    Dammak, Makkia
    Ali, Abir Amor Ben
    [J]. MATHEMATICA SLOVACA, 2022, 72 (06) : 1541 - 1550
  • [5] On noncoercive elliptic problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (04):
  • [6] NONLINEAR NONCOERCIVE NEUMANN PROBLEMS
    Gasinski, Leszek
    Klimczak, Liliana
    Papageorgiou, Nikolaos S.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (04) : 1107 - 1123
  • [7] Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions
    Colorado, E
    Peral, I
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) : 468 - 507
  • [8] Local bifurcation for elliptic problems;: Neumann versus Dirichlet boundary conditions
    Gámez, JL
    [J]. FIRST 60 YEARS OF NONLINEAR ANALYSIS OF JEAN MAWHIN, 2004, : 71 - 76
  • [9] On noncoercive elliptic problems
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2016, 23
  • [10] Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions
    Oto Havle
    Vít Dolejší
    Miloslav Feistauer
    [J]. Applications of Mathematics, 2010, 55 : 353 - 372