Topological AdS/CFT

被引:0
|
作者
Pietro Benetti Genolini
Paul Richmond
James Sparks
机构
[1] University of Oxford,Mathematical Institute
[2] INFN,undefined
[3] sezione di Milano-Bicocca,undefined
关键词
AdS-CFT Correspondence; Conformal Field Theory; Extended Supersymmetry; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We define a holographic dual to the Donaldson-Witten topological twist of N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} gauge theories on a Riemannian four-manifold. This is described by a class of asymptotically locally hyperbolic solutions to N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} gauged supergravity in five dimensions, with the four-manifold as conformal boundary. Under AdS/CFT, minus the logarithm of the partition function of the gauge theory is identified with the holographically renormalized supergravity action. We show that the latter is independent of the metric on the boundary four-manifold, as required for a topological theory. Supersymmetric solutions in the bulk satisfy first order differential equations for a twisted Sp(1) structure, which extends the quaternionic Kähler structure that exists on any Riemannian four-manifold boundary. We comment on applications and extensions, including generalizations to other topological twists.
引用
收藏
相关论文
共 50 条
  • [1] Topological AdS/CFT
    Genolini, Pietro Benetti
    Richmond, Paul
    Sparks, James
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [2] Topological AdS/CFT and the Ω deformation
    Pietro Benetti Genolini
    Paul Richmond
    Journal of High Energy Physics, 2019
  • [3] Topological AdS/CFT and the Ω deformation
    Genolini, Pietro Benetti
    Richmond, Paul
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)
  • [4] The AdS/CFT correspondence and topological censorship
    Galloway, GJ
    Schleich, K
    Witt, DM
    Woolgar, E
    PHYSICS LETTERS B, 2001, 505 (1-4) : 255 - 262
  • [5] Gravitational free energy in topological AdS/CFT
    Genolini, Pietro Benetti
    Richmond, Paul
    Sparks, James
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (09):
  • [6] AdS CFT correspondence and topological field theory
    Witten, E
    JOURNAL OF HIGH ENERGY PHYSICS, 1998, (12):
  • [7] Gravitational free energy in topological AdS/CFT
    Pietro Benetti Genolini
    Paul Richmond
    James Sparks
    Journal of High Energy Physics, 2018
  • [8] Topological Complexity in AdS3/CFT2
    Abt, Raimond
    Erdmenger, Johanna
    Hinrichsen, Haye
    Melby-Thompson, Charles M.
    Meyer, Rene
    Northe, Christian
    Reyes, Ignacio A.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2018, 66 (06):
  • [9] Boundary conditions in topological AdS4/CFT3
    Genolini, Pietro Benetti
    Grinberg, Matan
    Richmond, Paul
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)
  • [10] Rotating topological black branes in various dimensions and AdS/CFT correspondence
    Dehghani, MH
    PHYSICAL REVIEW D, 2002, 65 (12) : 1240021 - 1240027