International stock return predictability: Is the role of U.S. time-varying?

被引:0
|
作者
Goodness C. Aye
Mehmet Balcilar
Rangan Gupta
机构
[1] University of Pretoria,Department of Economics
[2] Eastern Mediterranean University,Department of Economics
来源
Empirica | 2017年 / 44卷
关键词
Stock returns; Predictability; Structural breaks; Nonlinearity; Time varying causality; C32; G10; G15;
D O I
暂无
中图分类号
学科分类号
摘要
This study investigates the predictability of 11 industrialized stock returns with emphasis on the role of U.S. returns. Using monthly data spanning 1980:2–2014:12, we show that there exist multiple structural breaks and nonlinearities in the data. Therefore, we employ methods that are capable of accounting for these and at the same time date stamping the periods of causal relationship between the U.S. returns and those of the other countries. First we implement a subsample analysis which relies on the set of models, data set and sample range as in Rapach et al. (J Finance LXVIII(4):1633–1662, 2013). Our results show that while the U.S. returns played a strong predictive role based on the OLS pairwise Granger causality predictive regression and news-diffusion models, its role based on the adaptive elastic net model is weak. Second, we implement our preferred model: a bootstrap rolling window approach using our newly updated data on stock returns for each countries, and find that U.S. stock return has significant predictive ability for all the countries at certain sub-periods. Given these results, it would be misleading to rely on results based on constant-parameter linear models that assume that the relationship between the U.S. returns and those of other industrialized countries are permanent, since the relationship is, in fact, time-varying, and holds only at specific periods.
引用
收藏
页码:121 / 146
页数:25
相关论文
共 50 条