Effects of ultrasonic vibration-assisted machining methods on the surface polishing of silicon carbide

被引:1
|
作者
Chen, Yunhui [1 ]
Pan, Ling [1 ,2 ]
Yin, Zhiqiang [2 ]
Wu, Yunli [1 ]
机构
[1] Fuzhou Univ, Sch Adv Mfg, Quanzhou 362251, Peoples R China
[2] Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
MATERIAL REMOVAL MECHANISM; COMPOSITE; WAVE;
D O I
10.1007/s10853-024-09661-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ultrasonic vibration-assisted polishing (UVAP) method, a recently developed advanced processing technology, is widely used in the processing of brittle materials. This study uses molecular dynamics (MD) simulations to investigate the polishing behavior of diamond grits on SiC workpieces during the UVAP process. The frequency (fz), amplitude (Az), and dimensions of the vibration are varied to investigate various aspects of the material removal process. In the low-frequency region, the UVAP processing method exacerbates taper slips and dislocations in the workpiece. In the high-frequency region, fz and Az can improve the MRR by more than 32% and reach 2-4 times higher than that of traditional scratching, respectively. The surface morphology obtained using MD simulation is consistent with the experimental results. In the ultrasonic elliptical vibration assisted polishing (UEVAP) method, fy not only causes a periodic and stable increase in temperature, which helps to transform atoms into an amorphous structure, but it also increases material removal rate (MRR) while decreasing friction factor and surface roughness. Appropriate increase of fz reduces forces and improves stress distribution. Az significantly increases MRR but results in a rough surface. In comparison to the UVAP process, the UEVAP method further improves MRR and produces smoother machined surfaces.Graphical AbstractThis study uses molecular dynamics (MD) simulations to investigate the polishing behavior of diamond grits on SiC workpieces during the UVAP process. The frequency (fz), amplitude (Az), and dimensions of the vibration are varied to investigate various aspects of the material removal process.
引用
收藏
页码:7700 / 7715
页数:16
相关论文
共 50 条
  • [1] Ultrasonic vibration-assisted polishing of cylindrical groove arrays on silicon carbide
    Sun, Zhi Y.
    Guo, Bing
    Zhao, Qing L.
    Pan, Yong C.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2014, 228 (12) : 1713 - 1720
  • [2] Surface quality enhancement in ultrasonic vibration-assisted electrochemical machining
    Ren, Mingzhu
    Zhu, Dong
    Zhou, Xinqun
    Wang, Yunmiao
    Li, Sule
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 703
  • [3] Development of Decoupling Device for Vibration-Assisted Roller Polishing of Silicon Carbide Ceramics
    Gu, Yan
    Liu, Ao
    Lin, Jieqiong
    Chen, Xiuyuan
    Lu, Faxiang
    Sun, En
    IEEE ACCESS, 2020, 8 : 219098 - 219113
  • [4] Analytical Prediction of Subsurface Damages and Surface Quality in Vibration-Assisted Polishing Process of Silicon Carbide Ceramics
    Gu, Yan
    Zhou, Yan
    Lin, Jieqiong
    Yi, Allen
    Kang, Mingshuo
    Lu, Hao
    Xu, Zisu
    MATERIALS, 2019, 12 (10)
  • [5] Ultrasonic Vibration Assisted Mechanical Chemical Polishing (MCP) of Silicon Carbide
    Liao, Y. S.
    Yu, Y. P.
    Huang, C. W.
    ADVANCES IN ABRASIVE TECHNOLOGY XV, 2012, 565 : 255 - +
  • [6] Wear of diamond grinding wheel in ultrasonic vibration-assisted grinding of silicon carbide
    Kai Ding
    Yucan Fu
    Honghua Su
    Xiaobei Gong
    Keqin Wu
    The International Journal of Advanced Manufacturing Technology, 2014, 71 : 1929 - 1938
  • [7] Study on the effect of ultrasonic vibration-assisted polishing on the surface properties of alumina ceramic
    Zhang, Chao
    Liang, Yingdong
    Cui, Zhijie
    Meng, Fanwei
    Zhao, Ji
    Yu, Tianbiao
    CERAMICS INTERNATIONAL, 2022, 48 (15) : 21389 - 21406
  • [8] Wear of diamond grinding wheel in ultrasonic vibration-assisted grinding of silicon carbide
    Fu, Y. (yucanfu@nuaa.edu.cn), 1929, Springer London (71): : 9 - 12
  • [9] Wear of diamond grinding wheel in ultrasonic vibration-assisted grinding of silicon carbide
    Ding, Kai
    Fu, Yucan
    Su, Honghua
    Gong, Xiaobei
    Wu, Keqin
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 71 (9-12): : 1929 - 1938
  • [10] Ultrasonic vibration-assisted machining: principle, design and application
    Xu, Wei-Xing
    Zhang, Liang-Chi
    ADVANCES IN MANUFACTURING, 2015, 3 (03) : 173 - 192