No-reference Video Quality Assessment Based on Spatio-temporal Perception Feature Fusion

被引:0
|
作者
Yaya Tan
Guangqian Kong
Xun Duan
Huiyun Long
Yun Wu
机构
[1] Guizhou University,College of Computer Science and Technology
[2] State Key Laboratory of Public Big Data,undefined
来源
Neural Processing Letters | 2023年 / 55卷
关键词
No-reference; Spatio-temporal perceptual features; Long-term sequences; User-generated content;
D O I
暂无
中图分类号
学科分类号
摘要
Quality assessment of real, user-generated content videos lacking reference videos is a challenging problem. For such scenarios, we propose an objective quality assessment method for no-reference video from the spatio-temporal perception characteristics of the video. First, a dual-branch network is constructed from distorted video frames and frame difference maps generated from a global perspective, considering the interaction between spatial and temporal information, incorporating a motion-guided attention module, and fusing spatio-temporal perceptual features from a multiscale perspective. Second, an InceptionTime network is introduced to further perform long-term sequence fusion to obtain the final perceptual quality score. Finally, the results were evaluated on the four user-generated content video databases of KoNViD-1k, CVD2014, LIVE_VQC and LIVE_Qualcomm, and the experimental results show that the network outperforms other partially recent no-reference VQA methods.
引用
下载
收藏
页码:1317 / 1335
页数:18
相关论文
共 50 条
  • [1] No-reference Video Quality Assessment Based on Spatio-temporal Perception Feature Fusion
    Tan, Yaya
    Kong, Guangqian
    Duan, Xun
    Long, Huiyun
    Wu, Yun
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1317 - 1335
  • [2] MODELING SPARSE SPATIO-TEMPORAL REPRESENTATIONS FOR NO-REFERENCE VIDEO QUALITY ASSESSMENT
    Shabeer, Muhammed P.
    Bhati, Saurabhchand
    Channappayya, Sumohana S.
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 1220 - 1224
  • [3] STAN: Spatio-Temporal Alignment Network for No-Reference Video Quality Assessment
    Yang, Zhengyi
    Dang, Yuanjie
    Xiang, Jianjun
    Chen, Peng
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III, 2023, 14256 : 160 - 171
  • [4] Objective No-Reference Video Quality Assessment Method Based on Spatio-Temporal Pixel Analysis
    da Silva, Wyllian B.
    Fonseca, Keiko V. O.
    Pohl, Alexandre de A. P.
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2015, E98D (07): : 1325 - 1332
  • [5] No-Reference Quality Evaluation of Stereoscopic Video Based on Spatio-Temporal Texture
    Yang, Jiachen
    Zhao, Yang
    Jiang, Bin
    Lu, Wen
    Gao, Xinbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (10) : 2635 - 2644
  • [6] No-reference video quality assessment method based on spatio-temporal features using the ELM algorithm
    da Silva, Wyllian Bezerra
    Mikowski, Alexandre
    Casali, Rafael Machado
    IET IMAGE PROCESSING, 2020, 14 (07) : 1316 - 1326
  • [7] Blind video quality assessment based on Spatio-Temporal Feature Resolver
    Bi, Xiaodong
    He, Xiaohai
    Xiong, Shuhua
    Zhao, Zeming
    Chen, Honggang
    Sheriff, Raymond Edward
    NEUROCOMPUTING, 2024, 574
  • [8] Extraction of Spatio-Temporal Features based on a Hardware Approach for a No-Reference Objective Video Quality Metric
    de Oliveira, Marcelo
    Viana da Silva, Caio Cesar
    da Silva, Wyllian Bezerra
    Jasinski, Ricardo
    Pedroni, Volnei Antonio
    Prado Pohl, Alexandre de Almeida
    2016 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2016,
  • [9] No Reference Video Quality Assessment Based on Spatio-Temporal Features and Attention Mechanism
    Zhu Ze
    Sang Qingbing
    Zhang Hao
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (18)
  • [10] No-reference video quality assessment based on human visual perception
    Zhou, Zhou
    Kong, Guangqian
    Duan, Xun
    Long, Huiyun
    Journal of Electronic Imaging, 2024, 33 (04)