On the weakly nonlinear Kelvin–Helmholtz instability of current-vortex sheets

被引:0
|
作者
Alessandro Morando
Paolo Secchi
Paola Trebeschi
机构
[1] University of Brescia,Department of Civil, Environmental, Architectural Engineering and Mathematics
关键词
Magneto-hydrodynamics; Incompressible fluids; Current-vortex sheets; Interfacial stability and instability; Primary 35Q35; Secondary 76E17; 76E25; 35R35; 76B03;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is concerned with the free boundary problem for 2D current-vortex sheets in ideal incompressible magneto-hydrodynamics near the transition point between the linearized stability and instability. In order to study the dynamics of the discontinuity near the onset of the instability, Hunter and Thoo (J Hyperbolic Differ Equ 8(4):691–726, 2011) have introduced an asymptotic quadratically nonlinear integro-differential equation for the amplitude of small perturbations of the planar discontinuity. The local-in-time existence of smooth solutions to the Cauchy problem for such amplitude equation was already proven in Morando et al. (J Math Pures Appl 105(4):490–536, 2016; J Hyperbolic Differ Equ 14(2):193–248, 2017), under a suitable stability condition. The aim of the present note is to provide a new proof of the existence result of the solution, with optimal regularity with respect to the initial data. The existence of the solution follows from a fixed point argument, where the main ingredient is the a priori estimate of Qφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal Q\left[ \varphi \right] $$\end{document} proven in Morando et al. (J Hyperbolic Differ Equ 14(2):193–248, 2017).
引用
收藏
相关论文
共 50 条
  • [1] On the weakly nonlinear Kelvin-Helmholtz instability of current-vortex sheets
    Morando, Alessandro
    Secchi, Paolo
    Trebeschi, Paola
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (04):
  • [2] Motion of a current-vortex sheet in the magnetic Kelvin-Helmholtz instability
    Baek, Seunghyeon
    Sohn, Sung-Ik
    [J]. PHYSICAL REVIEW E, 2023, 108 (03)
  • [3] Kelvin-Helmholtz instability in a current-vortex sheet at a 3D magnetic null
    Wyper, P. F.
    Pontin, D. I.
    [J]. PHYSICS OF PLASMAS, 2013, 20 (03)
  • [4] Approximate current-vortex sheets near the onset of instability
    Morando, Alessandro
    Secchi, Paolo
    Trebeschi, Paola
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (04): : 490 - 536
  • [5] Weakly nonlinear analysis on the Kelvin-Helmholtz instability
    Wang, L. F.
    Ye, W. H.
    Fan, Z. F.
    Li, Y. J.
    He, X. T.
    Yu, M. Y.
    [J]. EPL, 2009, 86 (01)
  • [6] Existence of approximate current-vortex sheets near the onset of instability
    Morando, Alessandro
    Secchi, Paolo
    Trebeschi, Paola
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2017, 14 (02) : 193 - 248
  • [7] On compressible current-vortex sheets
    Trakhinin, Y.
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 209 - 220
  • [8] Three-dimensional secondary instability in plane current-vortex sheets
    Dahlburg, RB
    Einaudi, G
    [J]. PHYSICS OF PLASMAS, 2001, 8 (06) : 2700 - 2706
  • [9] Data dependence of approximate current-vortex sheets near the onset of instability
    Morando, Alessandro
    Secchi, Paolo
    Trebeschi, Paola
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2017, 14 (03) : 517 - 534
  • [10] Stability of incompressible current-vortex sheets
    Morando, Alessandro
    Trakhinin, Yuri
    Trebeschi, Paola
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (02) : 502 - 520