The joy of factorization at large N: five-dimensional indices and AdS black holes

被引:0
|
作者
Seyed Morteza Hosseini
Itamar Yaakov
Alberto Zaffaroni
机构
[1] Department of Physics,Kavli IPMU (WPI), UTIAS
[2] Imperial College London,undefined
[3] The University of Tokyo,undefined
[4] INFN — Sezione di Milano-Bicocca,undefined
[5] Dipartimento di Fisica,undefined
[6] Università di Milano-Bicocca,undefined
关键词
AdS-CFT Correspondence; Field Theories in Higher Dimensions; Supersymmetric Gauge Theory; Black Holes in String Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the large N factorization properties of five-dimensional supersymmetric partition functions for CFT with a holographic dual. We consider partition functions on manifolds of the form ℳ=ℳ3×Sϵ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{M}}={\mathrm{\mathcal{M}}}_3\times {S}_{\upepsilon}^2 $$\end{document}, where ϵ is an equivariant parameter for rotation. We show that, when ℳ3 is a squashed three-sphere, the large N partition functions can be obtained by gluing elementary blocks associated with simple physical quantities. The same is true for various observables of the theories on ℳ3=Σg×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathcal{M}}}_3={\Sigma}_{\mathfrak{g}}\times {S}^1 $$\end{document}, where Σg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\Sigma}_{\mathfrak{g}} $$\end{document} is a Riemann surface of genus 𝔤, and, with a natural assumption on the form of the saddle point, also for the partition function, corresponding to either the topologically twisted index or a mixed one. This generalizes results in three and four dimensions and correctly reproduces the entropy of known black objects in AdS6×wS4 and AdS7× S4. We also provide the supersymmetric background and explicitly perform localization for the mixed index on Σg×S1×Sϵ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\Sigma}_{\mathfrak{g}}\times {S}^1\times {S}_{\upepsilon}^2 $$\end{document}, filling a gap in the literature.
引用
收藏
相关论文
共 50 条
  • [1] The joy of factorization at large N: five-dimensional indices and AdS black holes
    Hosseini, Seyed Morteza
    Yaakov, Itamar
    Zaffaroni, Alberto
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
  • [2] Non-extreme black holes of five-dimensional N=2 AdS supergravity
    Behrndt, K
    Cvetic, M
    Sabra, WA
    [J]. NUCLEAR PHYSICS B, 1999, 553 (1-2) : 317 - 332
  • [3] Superradiant instability of five-dimensional rotating charged AdS black holes
    Aliev, Alikram N.
    Delice, Oezguer
    [J]. PHYSICAL REVIEW D, 2009, 79 (02)
  • [4] Five-dimensional Kerr-AdS black holes, first law and counterterms
    Awad, Adel
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (31): : 5700 - 5708
  • [5] Phases of five-dimensional black holes
    Elvang, Henriette
    Emparan, Roberto
    Figueras, Pau
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (05):
  • [6] Uniqueness of five-dimensional supersymmetric black holes
    Gutowski, JB
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2004, (08):
  • [7] Notes on five-dimensional Kerr black holes
    Sakaguchi, Makoto
    Yasui, Yukinori
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (11): : 2331 - 2352
  • [8] Five-dimensional charged rotating black holes
    Kunz, J
    Navarro-Lérida, F
    Petersen, AK
    [J]. PHYSICS LETTERS B, 2005, 614 (1-2) : 104 - 112
  • [9] Universes encircling five-dimensional black holes
    Seahra, SS
    Wesson, PS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) : 5664 - 5680
  • [10] AdS black holes and finite N indices
    Agarwal, Prarit
    Choi, Sunjin
    Kim, Joonho
    Kim, Seok
    Nahmgoong, June
    [J]. PHYSICAL REVIEW D, 2021, 103 (12)