Janus monolayers of transition metal dichalcogenides

被引:0
|
作者
Lu A.-Y. [1 ]
Zhu H. [2 ]
Xiao J. [2 ]
Chuu C.-P. [3 ]
Han Y. [4 ]
Chiu M.-H. [1 ]
Cheng C.-C. [5 ,6 ]
Yang C.-W. [1 ]
Wei K.-H. [6 ]
Yang Y. [7 ,8 ]
Wang Y. [2 ,8 ]
Sokaras D. [9 ]
Nordlund D. [9 ]
Yang P. [7 ,8 ]
Muller D.A. [4 ,10 ]
Chou M.-Y. [3 ,11 ,12 ]
Zhang X. [2 ,8 ]
Li L.-J. [1 ]
机构
[1] Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal
[2] NSF Nanoscale Science and Engineering Center, University of California, Berkeley, 94720, CA
[3] Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei
[4] School of Applied AndEngineering Physics, Cornell University, Ithaca, 14850, NY
[5] Research Center for Applied Sciences, Academia Sinica, Taipei
[6] Department of Material Science and Engineering, National Chiao Tung University, Hsinchu
[7] Department of Chemistry, University of California, Berkeley, 94720, CA
[8] Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA
[9] SLAC National Accelerator Laboratory, 2575 Sand Hill Road Menlo Park, 94025, CA
[10] Kavli Institute at Cornell for Nanoscale Science, Ithaca, 14853, NY
[11] Department of Physics, National Taiwan University, Taipei
[12] School of Physics, Georgia Institute of Technology, Atlanta, 30332, GA
关键词
D O I
10.1038/nnano.2017.100
中图分类号
学科分类号
摘要
Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS 2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements. © 2017 Macmillan Publishers Limited, part of Springer Nature.
引用
收藏
页码:744 / 749
页数:5
相关论文
共 50 条
  • [1] Janus monolayers of transition metal dichalcogenides
    Lu, Ang-Yu
    Zhu, Hanyu
    Xiao, Jun
    Chuu, Chih-Piao
    Han, Yimo
    Chiu, Ming-Hui
    Cheng, Chia-Chin
    Yang, Chih-Wen
    Wei, Kung-Hwa
    Yang, Yiming
    Wang, Yuan
    Sokaras, Dimosthenis
    Nordlund, Dennis
    Yang, Peidong
    Muller, David A.
    Chou, Mei-Yin
    Zhang, Xiang
    Li, Lain-Jong
    [J]. NATURE NANOTECHNOLOGY, 2017, 12 (08) : 744 - +
  • [2] Janus Monolayers of Transition Metal Dichalcogenides: A DFT Study
    Angel Hernandez-Vazquez, Miguel
    de Luna Bugallo, Andres
    Olguin, Daniel
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (01):
  • [3] Carrier mobility predicted by born effective charge in Janus transition metal dichalcogenides monolayers
    Hu, Jingxin
    Luo, Jing
    Liu, Ziran
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2023, 34 (01):
  • [4] Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides
    Kaneda, Masahiko
    Zhang, Wenjin
    Liu, Zheng
    Gao, Yanlin
    Maruyama, Mina
    Nakanishi, Yusuke
    Nakajo, Hiroshi
    Aoki, Soma
    Honda, Kota
    Ogawa, Tomoya
    Hashimoto, Kazuki
    Endo, Takahiko
    Aso, Kohei
    Chen, Tongmin
    Oshima, Yoshifumi
    Yamada-Takamura, Yukiko
    Takahashi, Yasufumi
    Okada, Susumu
    Kato, Toshiaki
    Miyata, Yasumitsu
    [J]. ACS NANO, 2024, 18 (04) : 2772 - 2781
  • [5] Janus Monolayer Transition-Metal Dichalcogenides
    Zhang, Jing
    Jia, Shuai
    Kholmanov, Iskandar
    Dong, Liang
    Er, Dequan
    Chen, Weibing
    Guo, Hua
    Jin, Zehua
    Shenoy, Vivek B.
    Shi, Li
    Lou, Jun
    [J]. ACS NANO, 2017, 11 (08) : 8192 - 8198
  • [6] The Defects Genome of Janus Transition Metal Dichalcogenides
    Sayyad, Mohammed
    Kopaczek, Jan
    Gilardoni, Carmem M.
    Chen, Weiru
    Xiong, Yihuang
    Yang, Shize
    Watanabe, Kenji
    Taniguchi, Takashi
    Kudrawiec, Robert
    Hautier, Geoffroy
    Atatuere, Mete
    Tongay, Seth Ariel
    [J]. ADVANCED MATERIALS, 2024, 36 (30)
  • [7] Excitations of Intercalated Metal Monolayers in Transition Metal Dichalcogenides
    Fan, Shiyu
    Neal, Sabine
    Won, Choongjae
    Kim, Jaewook
    Sapkota, Deepak
    Huang, Feiting
    Yang, Junjie
    Mandrus, David G.
    Cheong, Sang-Wook
    Haraldsen, Jason T.
    Musfeldt, Janice L.
    [J]. NANO LETTERS, 2021, 21 (01) : 99 - 106
  • [8] Nanoscale Interfaces of Janus Monolayers of Transition Metal Dichalcogenides for 2D Photovoltaic and Piezoelectric Applications
    Rawat, Ashima
    Mohanta, Manish Kumar
    Jena, Nityasagar
    Dimple
    Ahammed, Raihan
    De Sarkar, Abir
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (19): : 10385 - 10397
  • [9] Topological superconductivity in Janus monolayer transition metal dichalcogenides
    Li, Xian-Dong
    Yu, Zuo-Dong
    Chen, Wei-Peng
    Gong, Chang-De
    [J]. CHINESE PHYSICS B, 2022, 31 (11)
  • [10] Topological superconductivity in Janus monolayer transition metal dichalcogenides
    李现东
    余作东
    陈伟鹏
    龚昌德
    [J]. Chinese Physics B, 2022, 31 (11) : 255 - 260