Geometric structure-preserving optimal control of a rigid body

被引:0
|
作者
A. M. Bloch
I. I. Hussein
M. Leok
A. K. Sanyal
机构
[1] University of Michigan,
[2] Worcester Polytechnic Institute,undefined
[3] Purdue University,undefined
[4] University of Hawaii,undefined
关键词
geometric integrators; Lie group integrators; optimal control; variational methods; rigid body; 37M15; 65K10; 49K15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a discrete variational optimal control problem for a rigid body. The cost to be minimized is the external torque applied to move the rigid body from an initial condition to a pre-specified terminal condition. Instead of discretizing the equations of motion, we use the discrete equations obtained from the discrete Lagrange–d’Alembert principle, a process that better approximates the equations of motion. Within the discrete-time setting, these two approaches are not equivalent in general. The kinematics are discretized using a natural Lie-algebraic formulation that guarantees that the flow remains on the Lie group SO(3) and its algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{s}\mathfrak{o}(3)$\end{document}. We use the Lagrange method for constrained problems in the calculus of variations to derive the discrete-time necessary conditions. We give a numerical example for a three-dimensional rigid body maneuver.
引用
收藏
页码:307 / 330
页数:23
相关论文
共 50 条
  • [1] GEOMETRIC STRUCTURE-PRESERVING OPTIMAL CONTROL OF A RIGID BODY
    Bloch, A. M.
    Hussein, I. I.
    Leok, M.
    Sanyal, A. K.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2009, 15 (03) : 307 - 330
  • [2] Structure-preserving local optimal control of mechanical systems
    Flasskamp, Kathrin
    Murphey, Todd D.
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2019, 40 (02): : 310 - 329
  • [3] Optimal Structure-Preserving Signatures
    Groth, Jens
    [J]. PROVABLE SECURITY, 2011, 6980 : 1 - 1
  • [4] COMPUTATIONAL EXPERIENCE WITH STRUCTURE-PRESERVING HAMILTONIAN SOLVERS IN OPTIMAL CONTROL
    Sima, Vasile
    [J]. ICINCO 2011: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2011, : 91 - 96
  • [5] Geometric Optimization for Structure-Preserving Model Reduction of Hamiltonian Systems
    Bendokat, Thomas
    Zimmermann, Ralf
    [J]. IFAC PAPERSONLINE, 2022, 55 (20): : 457 - 462
  • [6] A geometric structure-preserving discretization scheme for incompressible linearized elasticity
    Angoshtari, Arzhang
    Yavari, Arash
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 259 : 130 - 153
  • [7] Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups
    Abe, Masayuki
    Groth, Jens
    Haralambiev, Kristiyan
    Ohkubo, Miyako
    [J]. ADVANCES IN CRYPTOLOGY - CRYPTO 2011, 2011, 6841 : 649 - 666
  • [8] Structure-preserving interpolation of bilinear control systems
    Peter Benner
    Serkan Gugercin
    Steffen W. R. Werner
    [J]. Advances in Computational Mathematics, 2021, 47
  • [9] Structure-preserving interpolation of bilinear control systems
    Benner, Peter
    Gugercin, Serkan
    Werner, Steffen W. R.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (03)
  • [10] Optimal control of constrained mechanical systems in redundant coordinates: Formulation and structure-preserving discretization
    Schneider, Simeon
    Betsch, Peter
    [J]. Computer Methods in Applied Mechanics and Engineering, 2024, 432