Finite-dimensional irreducible modules of the Bannai–Ito algebra at characteristic zero

被引:0
|
作者
Hau-Wen Huang
机构
[1] National Central University,Department of Mathematics
来源
关键词
Bannai–Ito algebra; Irreducible modules; Universal property; 16G30; 33D45;
D O I
暂无
中图分类号
学科分类号
摘要
Assume that F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}$$\end{document} is algebraically closed with characteristic 0. A central extension BI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {BI}}$$\end{document} of the Bannai–Ito algebras is a unital associative F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}$$\end{document}-algebra generated by X, Y, Z, and the relations assert that each of {X,Y}-Z,{Y,Z}-X,{Z,X}-Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \{X,Y\}-Z, \quad \{Y,Z\}-X, \quad \{Z,X\}-Y \end{aligned}$$\end{document}is central in BI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {BI}}$$\end{document}. In this paper, we classify the finite-dimensional irreducible BI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {BI}}$$\end{document}-modules up to isomorphism. As we will see, the elements X, Y, Z are not always diagonalizable on finite-dimensional irreducible BI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {BI}}$$\end{document}-modules.
引用
收藏
页码:2519 / 2541
页数:22
相关论文
共 50 条