Lacunary Arithmetic Statistical Convergence

被引:0
|
作者
Taja Yaying
Bipan Hazarika
机构
[1] Dera Natung Govt. College,Department of Mathematics
[2] Rajiv Gandhi University,Department of Mathematics
[3] Gauhati University,Department of Mathematics
来源
关键词
Lacunary sequence; Statistical convergence; Arithmetic convergence; 40A05; 40A99; 46A70; 46A99;
D O I
暂无
中图分类号
学科分类号
摘要
A lacunary sequence is an increasing integer sequence θ=(kr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta =(k_r)$$\end{document} such that kr-kr-1→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_r-k_{r-1}\rightarrow \infty$$\end{document} as r→∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\rightarrow \infty .$$\end{document} In this article, we introduce arithmetic statistically convergent sequence space ASC and lacunary arithmetic statistically convergent sequence space ASCθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ASC_{\theta }$$\end{document} and study some inclusion properties between the two spaces. Finally, we introduce lacunary arithmetic statistical continuity and establish some interesting results.
引用
收藏
页码:547 / 551
页数:4
相关论文
共 50 条
  • [1] Lacunary Arithmetic Statistical Convergence
    Yaying, Taja
    Hazarika, Bipan
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2020, 43 (06): : 547 - 551
  • [2] ON I-LACUNARY ARITHMETIC STATISTICAL CONVERGENCE
    Kisi, Omer
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (1-2): : 327 - 339
  • [3] On lacunary σ-statistical convergence
    Karakaya, V
    INFORMATION SCIENCES, 2004, 166 (1-4) : 271 - 280
  • [4] LACUNARY STATISTICAL CONVERGENCE
    FRIDY, JA
    ORHAN, C
    PACIFIC JOURNAL OF MATHEMATICS, 1993, 160 (01) : 43 - 51
  • [5] ON LACUNARY STATISTICAL CONVERGENCE OF ORDER α
    Hacer SENGL
    Mikail ET
    Acta Mathematica Scientia, 2014, 34 (02) : 473 - 482
  • [6] Weighted Lacunary Statistical Convergence
    Basarir, M.
    Konca, S.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A1): : 185 - 190
  • [7] LACUNARY WEAK STATISTICAL CONVERGENCE
    Nuray, Fatih
    MATHEMATICA BOHEMICA, 2011, 136 (03): : 259 - 268
  • [8] ON LACUNARY STATISTICAL CONVERGENCE OF ORDER α
    Sengul, Hacer
    Et, Mikail
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (02) : 473 - 482
  • [9] Weighted Lacunary Statistical Convergence
    M. Basarir
    S. Konca
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 185 - 190
  • [10] (A, φ)-Lacunary Statistical Convergence of Order α
    Savas, Ekrem
    FILOMAT, 2020, 34 (02) : 639 - 645