The effect of a graft transformation on distance signless Laplacian spectral radius of the graphs

被引:0
|
作者
Dandan Fan
Guoping Wang
机构
[1] Xinjiang Normal University,School of Mathematical Sciences
[2] Xinjiang Agricultural University,College of Mathematical and Physical Sciences
关键词
Graft transformation; Distance signless Laplacian spectral radius; Non-starlike tree; Non-caterpillar tree; 05C50; 05C12;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that the vertex set of a connected graph G is V(G)={v1,…,vn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(G)=\{v_1,\ldots ,v_n\}$$\end{document}. Then we denote by TrG(vi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Tr_{G}(v_i)$$\end{document} the sum of distances between vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_i$$\end{document} and all other vertices of G. Let Tr(G) be the n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} diagonal matrix with its (i, i)-entry equal to TrG(vi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Tr_{G}(v_{i})$$\end{document} and D(G) be the distance matrix of G. Then QD(G)=Tr(G)+D(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{D}(G)=Tr(G)+D(G)$$\end{document} is the distance signless Laplacian matrix of G. The largest eigenvalues of QD(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_D(G)$$\end{document} is called distance signless Laplacian spectral radius of G. In this paper we give some graft transformations on distance signless Laplacian spectral radius of the graphs and use them to characterize the graphs with the minimum and maximal distance signless Laplacian spectral radius among non-starlike and non-caterpillar trees.
引用
收藏
页码:459 / 466
页数:7
相关论文
共 50 条
  • [1] The effect of a graft transformation on distance signless Laplacian spectral radius of the graphs
    Fan, Dandan
    Wang, Guoping
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (02): : 459 - 466
  • [2] On the distance signless Laplacian spectral radius and the distance signless Laplacian energy of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Paul, Somnath
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (03)
  • [3] On the distance signless Laplacian spectral radius of graphs
    Xing, Rundan
    Zhou, Bo
    Li, Jianping
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (10): : 1377 - 1387
  • [4] The effect of graft transformations on distance signless Laplacian spectral radius
    Lin, Hongying
    Zhou, Bo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 504 : 433 - 461
  • [5] On the Distance Signless Laplacian Spectral Radius of Bicyclic Graphs
    Nannan XU
    Aimei YU
    [J]. Journal of Mathematical Research with Applications, 2023, 43 (03) : 289 - 302
  • [6] ON THE DISTANCE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS AND DIGRAPHS
    Li, Dan
    Wang, Guoping
    Meng, Jixiang
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2017, 32 : 438 - 446
  • [7] On Distance Signless Laplacian Spectral Radius and Distance Signless Laplacian Energy
    Medina, Luis
    Nina, Hans
    Trigo, Macarena
    [J]. MATHEMATICS, 2020, 8 (05)
  • [8] On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
    Ramane, Harishchandra
    Gudodagi, Gouramma
    Manjalapur, Vinayak V.
    Alhevaz, Abdollah
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2019, 14 (02): : 105 - 125
  • [9] Distance signless Laplacian spectral radius and Hamiltonian properties of graphs
    Zhou, Qiannan
    Wang, Ligong
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (11): : 2316 - 2323
  • [10] Some results on the distance and distance signless Laplacian spectral radius of graphs and digraphs
    Li, Dan
    Wang, Guoping
    Meng, Jixiang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 218 - 225