On some permutation binomials and trinomials over F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^n}$$\end{document}

被引:0
|
作者
Srimanta Bhattacharya
Sumanta Sarkar
机构
[1] Indian Statistical Institute,Centre of Excellence in Cryptology
[2] TCS Innovations Labs,undefined
来源
关键词
Finite field; Permutation binomial; Permutation trinomial; 11T06; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we completely characterize (1) permutation binomials of the form x2n-12t-1+1+ax∈F2n[x],n=2st,a∈F22t∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{{{2^n -1}\over {2^t-1}}+1}+ ax \in \mathbb {F}_{2^n}[x], n = 2^st, a \in \mathbb {F}_{2^{2t}}^{*}$$\end{document}, and (2) permutation trinomials of the form x2s+1+x2s-1+1+αx∈F2t[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{2^s+1}+x^{2^{s-1}+1}+\alpha x \in \mathbb {F}_{2^t}[x]$$\end{document}, where s, t are positive integers. The first result, which was our primary motivation, is a consequence of the second result. The second result may be of independent interest.
引用
收藏
页码:149 / 160
页数:11
相关论文
共 50 条