Quasi-cluster algebras from non-orientable surfaces

被引:0
|
作者
Grégoire Dupont
Frédéric Palesi
机构
[1] ESPE de Guadeloupe,CNRS, Centrale Marseille, I2M, UMR 7373
[2] Aix Marseille Université,undefined
来源
Journal of Algebraic Combinatorics | 2015年 / 42卷
关键词
Cluster algebra; Triangulations; Hyperbolic geometry; Non-orientable surfaces;
D O I
暂无
中图分类号
学科分类号
摘要
With any non-necessarily orientable unpunctured marked surface (S,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbf {S}},{\mathbf {M}})$$\end{document}, we associate a commutative algebra A(S,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}_{({\mathbf {S}},{\mathbf {M}})}$$\end{document}, called quasi-cluster algebra, equipped with a distinguished set of generators, called quasi-cluster variables, in bijection with the set of arcs and one-sided simple closed curves in (S,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbf {S}},{\mathbf {M}})$$\end{document}. Quasi-cluster variables are naturally gathered into possibly overlapping sets of fixed cardinality, called quasi-clusters, corresponding to maximal non-intersecting families of arcs and one-sided simple closed curves in (S,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbf {S}},{\mathbf {M}})$$\end{document}. If the surface S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {S}}$$\end{document} is orientable, then A(S,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}_{({\mathbf {S}},{\mathbf {M}})}$$\end{document} is the cluster algebra associated with the marked surface (S,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbf {S}},{\mathbf {M}})$$\end{document} in the sense of Fomin, Shapiro and Thurston. We classify quasi-cluster algebras with finitely many quasi-cluster variables and prove that for these quasi-cluster algebras, quasi-cluster monomials form a linear basis. Finally, we attach to (S,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbf {S}},{\mathbf {M}})$$\end{document} a family of discrete integrable systems satisfied by quasi-cluster variables associated to arcs in A(S,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}_{({\mathbf {S}},{\mathbf {M}})}$$\end{document} and we prove that solutions of these systems can be expressed in terms of cluster variables of type A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document}.
引用
收藏
页码:429 / 472
页数:43
相关论文
共 50 条