Total torsion of three-dimensional lines of curvature

被引:0
|
作者
Matteo Raffaelli
机构
[1] TU Wien,Institute of Discrete Mathematics and Geometry
来源
Geometriae Dedicata | 2023年 / 217卷
关键词
Darboux curvatures; Parallel rotation; Three-dimensional curve; Total geodesic torsion; Primary 53A04; Secondary 53A07; 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
A curve γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} in a Riemannian manifold M is three-dimensional if its torsion (signed second curvature function) is well-defined and all higher-order curvatures vanish identically. In particular, when γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} lies on an oriented hypersurface S of M, we say that γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} is well positioned if the curve’s principal normal, its torsion vector, and the surface normal are everywhere coplanar. Suppose that γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} is three-dimensional and closed. We show that if γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} is a well-positioned line of curvature of S, then its total torsion is an integer multiple of 2π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\pi $$\end{document}; and that, conversely, if the total torsion of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} is an integer multiple of 2π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\pi $$\end{document}, then there exists an oriented hypersurface of M in which γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} is a well-positioned line of curvature. Moreover, under the same assumptions, we prove that the total torsion of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} vanishes when S is convex. This extends the classical total torsion theorem for spherical curves.
引用
收藏
相关论文
共 50 条
  • [1] Total torsion of three-dimensional lines of curvature
    Raffaelli, Matteo
    [J]. GEOMETRIAE DEDICATA, 2023, 217 (06)
  • [2] Total torsion of curves in three-dimensional manifolds
    Claudia C. Pansonato
    Sueli I. R. Costa
    [J]. Geometriae Dedicata, 2008, 136
  • [3] Total torsion of curves in three-dimensional manifolds
    Pansonato, Claudia C.
    Costa, Sueli I. R.
    [J]. GEOMETRIAE DEDICATA, 2008, 136 (01) : 111 - 121
  • [4] Total torsion of closed lines of curvature
    Qin, YA
    Li, SJ
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 65 (01) : 73 - 78
  • [5] The curvature of material lines in a three-dimensional chaotic flow
    Hobbs, DM
    Muzzio, FJ
    [J]. PHYSICS OF FLUIDS, 1998, 10 (08) : 1942 - 1952
  • [6] Three-dimensional TV Minimization Algorithm using Total Curvature
    Wisotzky, Eric
    Kaeseberg, Marc
    Keeve, Erwin
    [J]. BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2014, 59 : S542 - S542
  • [7] Particles with curvature and torsion in three-dimensional pseudo-Riemannian space forms
    Ferrandez, Angel
    Guerrero, Julio
    Javaloyes, Miguel Angel
    Lucas, Pascual
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (09) : 1666 - 1687
  • [8] New improved massive gravity and three-dimensional spacetimes of constant curvature and constant torsion
    Dereli, Tekin
    Yetismisoglu, Cem
    [J]. PHYSICAL REVIEW D, 2016, 94 (06)
  • [9] Measurement of ventricular three-dimensional torsion
    Mobasheri M.
    Mokhtari-Dizaji M.
    Roshanali F.
    [J]. Journal of Echocardiography, 2015, 13 (2) : 59 - 65
  • [10] On three-dimensional constant curvature strings
    Ramos, E
    [J]. PHYSICS LETTERS B, 1998, 427 (1-2) : 41 - 46